Software hands-on session at LAL

ENS-LAL

LAL/IN2P3

2014-02-13

Introduction

Goals

- know how to use software and computers within research groups
- know a few mechanisms, tools and workflows for software development
 - configuration management
 - version management
 - documentation
- software development good practices
- a few handles on object oriented methodologies
- elements about current technologies
 - C++ language
 - data structures definition
 - graphical applications

2/9

Organization/Agenda/Schedule

Schedule

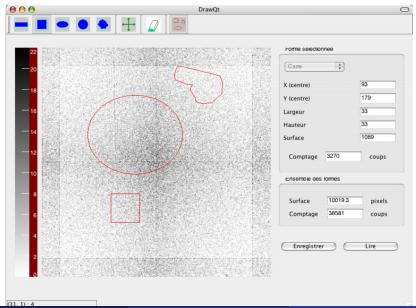
- 5-8 days: $9h \Rightarrow 12h$, $14h \Rightarrow 17h$
- Building 203 Room 203

Teachers - Engineers at LAL

Sébastien Binet, Laurent Garnier, Antoine Pérus

One MacOSX-10.6 machine per pair of students

- each machine has its own set of preconfigured software tools
- all tools needed during the hands-on sessions are pre-installed
- a default account is defined:
 - user name is ens<nn> (depending on the machine)
 - ▶ password is ens<AAAA> (modify it ASAP!)


Organization/Agenda/Schedule - II

Documentation: http://ens.lal.in2p3.fr

Hands-on sessions' outline

- Starting point is an application loosely inspired from a real scientific application (2d-image processing) but modified for pedagogical purposes.
- Along the way, we'll progressively investigate various related aspects about technologies of programming:
 - organize and plan software development
 - introduce (and use) a workflow
- Reimplement some of the features of the original application
- Leverage a few software tools currently used in research environments
 - these tools are not necessarily standards /per se/ but are used at large in our community and are good examples of what is available at large anyways.

DrawQt

- Study and process images, recorded by an imaging system processing biological samples
- we'll define (by hand) subsets of these images to infer characterizations (so interesting regions are isolated)
- these regions are constructed from various geometrical shapes (rectangles, polygons, circles, ...)
- we'll then apply analysis algorithms onto these regions of interest:
 - hit counters
 - areas estimates
 - etc . . .
- The final application will allow the scientist:
 - to access the basic and test images,
 - to construct and manage regions of interest
 - to apply analysis algorithms on these images

DrawQt - outline

- Investigate, sequentially and/or in parallel:
 - how to organize and manage software development
 - ▶ I/O mechanisms and facilities
 - data structures
 - analysis algorithms
- How ?
 - starting point: almost empty but working skeleton of the interactive graphical application
 - iteratively introduce working modules piece-wise and independently developed - inside that skeleton
- Projects
 - a common set of features is then progressively developped
 - eventually, a set of additional features and upgrades are proposed as standalone mini-projects

8/9

Grading

Grades

Grades are based on the following 3 items:

- quality of the produced code (8 pts)
- usage and understanding of the tools (8 pts)
- quality of work invested in the hands-on sessions as well as its progression (4 pts)

Warning

The work is performed by pairs of students, **BUT** students get their own grade!

9/9