
C++: variables

ens-lal

2013

ens-lal (LAL) C++: variables 2013 1 / 14

Outline

declaring variables
stack allocation & life-time
dynamic allocation (heap allocation)

ens-lal (LAL) C++: variables 2013 2 / 14

Declaring variables

The general syntax to declare a new variable is:

<qualifier(s)> <modifier(s)> <type> <variable name>

type and variable name are mandatory
e.g:

int index;
unsigned int counter;
const std::string name = "Bob";

ens-lal (LAL) C++: variables 2013 3 / 14

builtins

char: integer type encoded on 1 byte [−128; 127]
short: short integer encoded on 2 bytes [−32768; 32767]
int: integer encoded on 4 bytes

long: integer encoded on 8 bytes

float: real, simple precision (4 bytes)
double: real, double precision (8 bytes)
bool: boolean, only 2 possible values (true|false)

modifiers

modifiers modify the type they are applied to.
signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and
long can be applied to double.

ens-lal (LAL) C++: variables 2013 4 / 14

modifiers

modifiers modify the type they are applied to.
signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and
long can be applied to double.

Example:

unsigned short us; // [0; 65535]
short s; // [-32768; 32767]

signed short ss; // [-32768; 32767]

qualifiers

Qualifiers provide additional information about the variables they precede.
Example:

const int a = 4; // ’a’ can NOT be modified anymore

ens-lal (LAL) C++: variables 2013 5 / 14

enum type

enum direction { north, east, south, west }; // type decl.
direction wind = south; // var. decl.

The compiler associates to each direction an integer value, starting at 0
(by default.)

void type

void is a pseudo-type meaning “empty”. Used as a pointer type (to point
at anything) or as a function return value, for functions returning nothing.

arrays

char c[10]; // array of 10 characters
double d[10][20]; // a 2d-array of doubles

Warning: indices start at 0.
Warning: C/C++ arrays are “row-major”. FORTRAN ones were
“column-major”.

ens-lal (LAL) C++: variables 2013 6 / 14

pointer type

C and C++ provide a means to access memory addresses under which
variables are stored.
A pointer is a variable allowing to store and manipulate these
addresses.
the address of a variable a can be obtained by &a.
access to the data stored at the address pa can be obtained by
dereferencing pa: *pa.

int *pa; // ’pa’ is a pointer to a var. of type int
int a = 4; // ’a’ is an integer initialized w/ val. 4

pa = &a; // initialization of ’pa’ w/ addr. of ’a’
std::cout << *pa << std::endl; // => displays ’4’ on screen.

a pointer can (and always should) be initialized to a null value:

int *pa = NULL;

ens-lal (LAL) C++: variables 2013 7 / 14

Lifetime of a variable

Reminder: in C and C++, each and every variable must be declared.
the portion of code where a variable is “known”, is called the scope of
that variable. The scope starts at the declaration line and ends with
the block in which the variable was defined (marked by a })

void fct() {
int i = 42; // ’i’ is known ’til the end of the fct
for (i=0; i<10; ++i) {

int j = 2*i; // ’j’ is known ’til the end of the for-loop
std::cout << j << std::endl;

} // <-- ’j’ is "destroyed" here
} // <----- ’i’ is "destroyed" here

ens-lal (LAL) C++: variables 2013 8 / 14

Lifetime of a variable (cont’d)

the declaration of a local variable n may hide declarations of other
variables called n:

I in enclosing scopes
I at global scope
I data members of the class if the function is a function member

F whence the usefulness of following a naming convention for data
members.

special case: a static variable is known/alive during the execution of
the whole program.

ens-lal (LAL) C++: variables 2013 9 / 14

Dynamic memory management: new and delete

dynamic memory allocation allows to free the programmer from the
rules of the allocation on the stack.
but then, the programmer must manage herself the memory via:

I pointers
I new and delete operators to (resp.) allocate and de-allocate memory

resources

the new operator instantiates an object: it reserves enough memory to
store that new object, calls the constructor to initialize that memory
region and then returns the memory address of this region.
the delete operator calls the destructor on that memory region and
releases the memory back to the operating system.
the delete and new operators can be applied on the builtin types as
well as on the complex types (classes and structs)

ens-lal (LAL) C++: variables 2013 10 / 14

Summary

builtins

// heap allocation
int *p = new int;
*p = 421; // ’p’ points to an int. init’d to 421
delete p;

// stack allocation
int i = 421;

ens-lal (LAL) C++: variables 2013 11 / 14

Summary - II

array

// heap allocation
float *arr = new float[5]; // array of 5 floats
for (int i=0; i<5; ++i) { arr[i] = 1.4 * i; }
delete[] arr;

// stack allocation
float arr[5];
for (int i=0; i<5; ++i) { arr[i] = 1.4 * i; }

ens-lal (LAL) C++: variables 2013 12 / 14

classes - heap allocation

Circle *c0 = new Circle; // default c-tor
delete c0;
Circle *c1 = new Circle(x, y); // c-tor w/ params
c1->move(10, 20);
delete c1;

// array of circles
Circle *arr = new Circle[10]; arr[2].move(10,20);
delete[] arr;

classes - stack allocation

Circle c0; // default c-tor
Circle c1(x, y); // c-tor w/ params
c1.move(10, 20);
// array of circles
Circle arr[10]; arr[2].move(10, 20);

ens-lal (LAL) C++: variables 2013 13 / 14

Questions ?

Questions ?

ens-lal (LAL) C++: variables 2013 14 / 14

	C++: variables

