C++: variables

ens-lal (LAL)

ens-lal

2013

1/ 14

@ declaring variables
o stack allocation & life-time

@ dynamic allocation (heap allocation)

ens-lal (LAL) 2013 2/ 14

Declaring variables

The general syntax to declare a new variable is:
<qualifier(s)> <modifier(s)> <type> <variable name>

type and variable name are mandatory
e.g:

int index;

unsigned int counter;

const std::string name = "Bob";

ens-lal (LAL) 2013 3/14

char: integer type encoded on 1 byte [—128; 127]

short: short integer encoded on 2 bytes [—32768; 32767]
int: integer encoded on 4 bytes

long: integer encoded on 8 bytes

float: real, simple precision (4 bytes)

double: real, double precision (8 bytes)

bool: boolean, only 2 possible values (true|false)

modifiers

@ modifiers modify the type they are applied to.

@ signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and
long can be applied to double.

ens-lal (LAL) 2013 4/14

modifiers

e modifiers modify the type they are applied to.

@ signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and
long can be applied to double.

Example:

unsigned short us; // [0; 65535]
short s; // [-32768; 32767]
signed short ss; // [-32768; 32767]

Qualifiers provide additional information about the variables they precede.
Example:

const int a = 4; // ’a’ can NOT be modified anymore

ens-lal (LAL) 2013 5/ 14

enum type

enum direction { north, east, south, west }; // type decl.
direction wind = south; // war. decl.

The compiler associates to each direction an integer value, starting at 0

(by default.)

| A\

void type

void is a pseudo-type meaning “empty”. Used as a pointer type (to point
at anything) or as a function return value, for functions returning nothing.

arrays

char c[10]; // array of 10 characters
double d[101[20]1; // a 2d-array of doubles

Warning: indices start at 0.
Warning: C/C++ arrays are “row-major’. FORTRAN ones were
“column-major”.

ens-lal (LAL) 2013 6/ 14

@ C and C++ provide a means to access memory addresses under which
variables are stored.

@ A pointer is a variable allowing to store and manipulate these
addresses.

@ the address of a variable a can be obtained by &a.

@ access to the data stored at the address pa can be obtained by
dereferencing pa: *pa.

int *pa; // ’pa’ is a pointer to a wvar. of type int
int a = 4; // ’a’ is an integer initialized w/ wval. 4
pa = &a; // initialization of ’pa’ w/ addr. of ’a’

std::cout << #*pa << std::endl; // => displays ’4’ on screen.

@ a pointer can (and always should) be initialized to a null value:

int *pa = NULL;

V.

ens-lal (LAL) 2013 7/14

Lifetime of a variable

@ Reminder: in C and C++, each and every variable must be declared.

@ the portion of code where a variable is “known”, is called the scope of
that variable. The scope starts at the declaration line and ends with
the block in which the variable was defined (marked by a })

void fct() {
int i = 42; // ’%7 is known ’til the end of the fct
for (i=0; i<10; ++i) {
int j = 2%i; // ’5’ 4s known ’til the end of the for-loo;
std::cout << j << std::endl;
Y // <-- ’j57 4s "destroyed" here
Y /) <----- 74’ 45 "destroyed" here

ens-lal (LAL) 2013 8 /14

Lifetime of a variable (cont'd)

@ the declaration of a local variable n may hide declarations of other
variables called n:

» in enclosing scopes

» at global scope
» data members of the class if the function is a function member

* whence the usefulness of following a naming convention for data
members.

@ special case: a static variable is known/alive during the execution of
the whole program.

ens-lal (LAL) 2013 9/14

Dynamic memory management: new and delete

@ dynamic memory allocation allows to free the programmer from the
rules of the allocation on the stack.
@ but then, the programmer must manage herself the memory via:
> pointers
» new and delete operators to (resp.) allocate and de-allocate memory
resources
@ the new operator instantiates an object: it reserves enough memory to
store that new object, calls the constructor to initialize that memory
region and then returns the memory address of this region.

@ the delete operator calls the destructor on that memory region and
releases the memory back to the operating system.

@ the delete and new operators can be applied on the builtin types as
well as on the complex types (classes and structs)

ens-lal (LAL) 2013 10 / 14

Summary

builtins

// heap allocation

int *p = new int;

xp = 421; // ’p’ points to an int. init’d to 421
delete p;

// stack allocation
int i = 421;

ens-lal (LAL) 2013 11 / 14

Summary - I

array

// heap allocation

float *arr = new float[5]; // array of & floats
for (int i=0; i<5; ++i) { arr[i] 1.4 x i; }
delete[] arr;

// stack allocation
float arr[5];
for (int i=0; i<5; ++i) { arrl[il

1.4 % i; }

ens-lal (LAL) 2013 12 / 14

classes - heap allocation

Circle *cO
delete cO0;
Circle *cl = new Circle(x, y); // c-tor w/ params
cl->move (10, 20);

delete ci;

new Circle; // default c-tor

// array of circles
Circle *arr = new Circle[10]; arr[2] .move(10,20);
delete[] arr;

classes - stack allocation

Circle c0; // default c-tor

Circle cl(x, y); // c-tor w/ params
cl.move (10, 20);

// array of circles

Circle arr[10]; arr[2] .move(10, 20);

<

ens-lal (LAL) 2013 13 / 14

Questions ?

ens-lal (LAL) 2013 14 / 14

	C++: variables

