C++: Classes

ens-lal (LAL) 2013 1/33

@ Introduction to Object Oriented Languages

» what is an object

» properties of an object

» notions of inheritance and polymorphism
o Classes in C++

» interface

» implementation

» constructors, destructor

» inheritance, polymorphism

ens-lal (LAL) 2013 2 /33

Object Oriented Language: what's an object ?

@ an object is a computer entity holding:

» data members (fields, attributes, instance’s variables)
» member functions (methods, subroutines)

Data members

Function members

Grouping variables and functions within the same entity is called

encapsulation

@ access to data and methods can be regulated:

Internal
View

ens-lal (LAL)

Private members

Public members

]

External
View

2013

3/33

ect: examples (using the UML notation)

Bicycle

«—

m_wheelSize
m_nGears
m_color
m_weight

Accelerate()
Brake()
SwitchGear()
GetColor()
GetWeight()

ens-lal (LAL)

Class name

(._ Data members _)

(._Function memhers_)

—>

FourVector

m_px
m_py
m_pz
m_ene

Px()
Py()
Pz()
Ene()
Mass|()
Pt()
Etal()

Internal
view

External
view

2013 4/33

Properties of an object

@ an object has a state

» corresponds to the value of its attributes at a given time t
> an object’s state can evolve with time

@ an object is described by a class

» a class is a prototype defining all the attributes and methods common
to all objects of a given type
» a class is a blueprint to create new objects with common traits

@ an object has an identity

» objects can be distinguished apart even if all of their attributes have
the same value.

Do not confuse an instance (of a class) with a class (of objects)

@ an instance refers to a particular object
@ a class refers to a group or category of similar things.

» the bicycle of my neighboor and mine are 2 instances of the same class
“bicycle” even if their are strictly identical.

ens-lal (LAL) 2013 5/ 33

Notion of inheritance

Inheritance is one of the pillars of the Object Oriented Programming
(OOP): it allows to create a new class from an already existing one.

The new class, called derived class, holds the attributes and methods from
the parent class, plus the new attributes and new methods of that new
class.

Inheritance allows to create a hierarchy of classes:

@ the base class is the most generic class of that tree
@ the derived classes are more and more specialized

Twowheels Base class, parent class
W/o Engine Engine Defived class,
child class

N O

Scooter Bicycle Moto Moped

ens-lal (LAL) 2013 6/ 33

Notion of polymorphism

@ a derived class may provide a new definition for a method inherited
from a parent class
» e.g. if it needs to react differently when that method is called
» this new definition will be override the parent one: it is called
specialization
@ polymorphism: the same operation or method does something
different on different classes of the same hierarchy tree.
» one can call this method w/o having to worry about the intrinsic type
of that object.
» one abstracts away the details of the more specialized classes of a
family of objects by hiding those details behind a common interface
(usually the base class)

ens-lal (LAL) 2013 7/33

@ the method Accelerate() isn't implemented the same way for a

bicyle and a motocycle.

@ the definition provided for this method by each of these subclasses

triggers a different behaviour whether the underlying TwoWheel object
is Bicyle or a MotorCycle

Bicycle

TwoWheel

m_pedal

m_wheelSize
m_color
m_weight
m_nGears

virtual Accelerate()
virtual Brake()
virtual SwitchGear()
GetPedal()

virtual Accelerate()
virtual Brake()
GetColor()
GetWeight()

MotorCycle

ens-lal (LAL)

m_motor
m_transmission

virtual Acceleratel()
virtual Brake()
virtual SwitchGear()
FillTank()

2013

8 /33

OOP vs Procedural programming

@ Pros
> programs are easier to maintain

* in a procedural program, if one wants to modify a data structure,
almost all the code needs to be rewritten

> programs are clearer
* all the functions are attached to a data type
» increased modularity

* possibility/easier to reuse code

e Cons
» programs are less efficient

* memory-wise and speed-wise
* b/c of abstractions

ens-lal (LAL) 2013 9/33

Class: interface

Description/declaration of the internal structure of a class

class Ellipsis {

/) - > internal view
protected:
Members' visibility: float m_cx, m_cy;
@ public: members accessible to float m_a, m_b;
everyone V2R GRS internal view
@ private: members accessible / - _—
only from within the class S errernas vrew
public:

@ protected: members accessible void move(float dx
from within that class and its float dy);

derived classes void zoom(float z);

float surface();
VAR ST external view

ens-lal (LAL) 2013 10/ 33

Class: implementation

Definition of its associated functions.

class Ellipsis {
protected:

float m_cx, m_cy;
float m_a, m_b;
public:

void move(float dx,

float dy);

void zoom(float z);
float surface();

};

ens-lal (LAL)

void
Ellipsis::move(float dx, float dy)
{ m_cx += dx; m_cy += dy; }

void
Ellipsis::zoom(float z)
{ma=*=2z; mb *=2z; }

#include <math.h>
float
Ellipsis::surface()

{

return 0.25 * M_PI * m_a * m_b;

2013 11/ 33

Classes: instantiation

int main(int argc, char #**xargv) {
// allocation on the stack

class Ellipsis { o
Ellipsis e;

protected:
float m_cx, m_cy;
float m_a, m_b;
public:
void move(float dx,
float dy);
void zoom(float z);
float surface();

};

// access to members with .’
e.move(50., 0.);

float s = e.surface();
e.zoom(1.5);

e.m_cx = 30.; // NOT allowed !!!

ema=2.; // NOT allowed !!!
return O;

ens-lal (LAL) 2013 12 / 33

Files layout

@ by convention, files containing C++ code have .cpp, .c++, .cc, .cxx
or .C for extension
@ the file holding the declarations is called header file and has .hh, .hxx
or .h as an extension
@ by convention, one creates one .cxx and one .hxx file per class
» each of these files are named after the class name, in lower case.
@ by convention:

» class names start with an upper case
» data members names start with m_ or just _
» member functions names are lower case.

ens-lal (LAL) 2013 13 /33

ellipsis.h

class Ellipsis {

protected:

float m_cx, m_cy;

float m_a, m_b;

public:

void move(float dx,
float dy);

void zoom(float z);

float surface();

};

ens-lal (LAL)

ellipsis.cxx

#include <math.h>

#include "ellipsis.h"

void

Ellipsis: :move(float dx,
float dy)

{ m_cx += dx; m_cy += dy; }

void
Ellipsis::zoom(float z)
{ma *=z; m_b *= z; }

float
Ellipsis::surface()

{

return 0.25 * M_PI * m_a * m_

b;

¥

4

2013

14 / 33

main.cxx

#include <iostream>
#include "ellipsis.h"

int main(int argc, char **argv)
{
Ellipsis e;

e.move(50., 0.);

float s = e.surface();
std::cout << "surface= " << g << std::endl;

e.zoom(1.5);

return O;

¥

v

ens-lal (LAL) 2013 15/ 33

Constru

@ the constructor is member function responsible for allocating and
initializing the data members of a new class instance
» systematically called when an object is instantiated
» has no return type
» is named after the class’ name

@ a class can have multiple constructors
@ special constructors:

» default constructor

* no argument
* automatically generated by the compiler if the user does not provide one

» copy constructor

* takes one argument of type “the object’s type”
* creates “clones” of objects
* automatically generated by the compiler if none provided

ens-lal (LAL) 2013 16 / 33

ellipsis.h

class Ellipsis {
public:

// default c-tor
Ellipsis();
// c-tor with parameters
Ellipsis(float cx, float cy, float a, float b);
// copy c-tor
Ellipsis(const Ellipsis &e);

protected:

float m_cx, m_cy;

float m_a, m_b;
public:

void move(float dx, float dy);
void zoom(float z);

float surface();

};

ens-lal (LAL)

2013

17 / 33

ellipsis.cxx

#include "ellipsts.h”
Ellipsis::Ellipsis()

Ellipsis::Ellipsis(float cx, float cy,
float a, float b)
m_cx(cx), m_cy(cy),
m,a (a), m_b (b)
{}

Ellipsis::Ellipsis(const Ellipsis& e)
m_cx(e.m_cx), m_cy(e.m_cy),
m_,a (e.m_,a), m_.b (e.m_b)

{}

ens-lal (LAL)

2013

18 / 33

main.cxx

#include "ellipsis.h"

int main(int argc, char **argv)
{
Ellipsis el;
Ellipsis e2(2.5, 6.5, 12., 15.);

// e3 is a clone of el
Ellipsis e3(el);

// e4 is another clone of el
Ellipsis e4 = el;

return 0;

¥

ens-lal (LAL)

2013

19 / 33

member function systematically called just before the destruction of
an object

named after the class’ name, with ~ in front
no return type

no argument

only one per class

release resources (memory, network connection, file handles, ...) to
the operating system

ens-lal (LAL) 2013 20/ 33

ellipsis.h

class Ellipsis {
public:

// default c-tor

Ellipsis();

// c-tor with parameters

Ellipsis(float cx, float cy, float a, float b);
// copy c-tor

Ellipsis(const Ellipsis &e);

// d-tor
"EllipsisQ);

protected:

float m_cx, m_cy;
float m_a, m_b;

// etc... as before.
g

ens-lal (LAL) 2013 21 /33

ellipsis.cxx

#include "ellipsis.h"
Ellipsis::"Ellipsis()
{

// release resources...

// we don’t have anything to do here, for Ellipsts.

¥

Ellipsis::Ellipsis(float cx, float cy,

float a,
m_cx(cx), m_cy(cy),
m_,a (a), m_b (b)
{>

// as before. ..

float b)

ens-lal (LAL)

2013

22 /33

main.cxx

#include "ellipsis.h"

int main(int argc, char **argv)

{
// allocate an ellipsis on the stack
// => automatic memory
Ellipsis el;

// allocate an ellipsis on the heap
// => dynamic memory. *user* has to manage it.

Ellipsis * e2 = new Ellipsis(2.5, 6.5, 12., 15.);

// manually delete ’e2’
// implicitely call d-tor of Ellipsis on e2
delete e2;

return 0;
} // <-- el "goes out of scope". d-tor is called.

ens-lal (LAL)

2013

23 /33

Inheritance

@ Inheritance allows de specialize a class by defining a Is A kind of
relationship (IsA in the litterature)
@ a circle may be modeled as a specialization of an ellipsis

» it has the same properties plus some more which are specific to a circle
» one then makes the Circle class derive from the E1lipsis class

Shape
Ellipsis Rectangle
Circle Square

ens-lal (LAL) 2013 PYWER)

ellipsis

// ellipsis.h ------ommomee o
class Ellipsis {
public:

Ellipsis();

/7

virtual void display();

33

// ellipsSisS.cqL -------------—-————-~——--
#include <tostream>

#include "ellipsis.h"

void Ellipsis::display() {

std::cout << "Ellipsis{a=" << m_a << ",

<< std::endl;

b=" << m_b << u}u

v

ens-lal (LAL)

2013

25 / 33

circle

// circle.h
#include "ellipsis.h”
class Circle : public Ellipsis {
public:
Circle();
Circle(float x, float y, float r);
“Circle();

virtual void display();
Iy
// eof

ens-lal (LAL) 2013 26/ 33

circle

// circle.czz

#include <iostream>

#include "circle.h"
Circle::Circle() : Ellipsis()
{3}

Circle::Circle(float x, float y, float r)
Ellipsis(x, y, 2.*r, 2.*r)

V.

{
void Circle: :display()
{
std: :cout
<< "Circle{radius=" << m_ax0.5 << "}"
<< std::endl;
}
ens-lal (LAL) 2013

27 / 33

#include "circle.h"

int main(int argc, char **argv)
{
Circle c(5., 5., 15.);
c.displayQ;
return O;

¥

$./test-circle
Circle{radius=15}

ens-lal (LAL) 2013 28 /33

Polymorphism: An object inheriting a method from a parent class, can
react or behave differently than the parent class when a call to that
method takes place.

main

#include "circle.h"

int main(int argc, char x*argv) {
Ellipsis e(0., 0.5, 8.5, 10.2);
e.move(-1, 1); e.display(Q);

Circle c(-2.5, 2.5, 7.4);

// Ellipstis::move isn’t redefined in Circle
// => calls Ellipsis: :move

c.move(0.5, 1.5);

// Ellipstis::display was redefined in Circle
// => calls Circle::display

c.displayQ;

return 0;

}

ens-lal (LAL) 2013 29 /33

#include "circle.h"

int main(int argc, char x*argv) {
Ellipsis *el = new Ellipsis;
// call the Ellipsis::display method
el->display();
delete el; el = NULL;

Ellipsis *e2 = new Circle;

// given that:

// - Ellipsts::display %s a virtual method
// - Ellipsis::display s redefined in Circle::display
// => call the ::display method of the underlying typ
// (ie: Circle)

// => this is called inheritance polymorphism
e2->display();

delete e2; e2 = NULL;

return O;
ens-lal (LAL) 2013 30 /33

®

Vocabulary

e variable: associate a name (a symbol) with a value, whose value may
evolve thru time. A variable has a type, defined once and for all by the
program

@ encapsulation: grouping variables and functions together inside an
entity, called class.

o class: prototype (blueprint) defining the attributes and methods
common to all the instances (objects) of a given type.

e class interface: description/declaration of the internal structure of a
class, including the list of the data members and the declarations of
member functions, in header file (usually a .h)

@ class implementation: code definition of the functions declared in the
class interface, in an implementation file (usually .cxx.)

ens-lal (LAL) 2013 31 /33

Vocabulary (cont'd)

@ Inheritance: allows to define a hierarchy tree of classes, each child
class inheriting the methods and attributes of its parent(s)

@ Polymorphism: 2 objects inheriting a method from the same parent
class, can react differently to a call placed for this method (by
redefining this method.) It is then possible to call this method w/o
worrying about its underlying concrete type.

ens-lal (LAL) 2013 32 /33

Questions ?

ens-lal (LAL) 2013 33 /33

	C++: Classes

