
LAL-Info Documentation
Release 1.14-npac

LAL

February 12, 2014

CONTENTS

1 Agenda 3

2 Bootstrapping 5

3 Grading 7

4 CS hands-on at LAL 9
4.1 Introduction to C++ . 9
4.2 First steps with subversion (svn) . 14
4.3 Reading an image from a file . 21
4.4 Managing a graphical interface with Qt . 27
4.5 DrawQt . 35
4.6 Reading a file of shapes . 38
4.7 Projects . 45
4.8 Appendix . 59

Index 85

i

ii

LAL-Info Documentation, Release 1.14-npac

spot
The primary purpose of this lecture is to explore various computer science technologies which are exercized through:

• the conception,

• the building,

• and the development

of a complex application like those developed in an actual scientific collaboration.

Throughout this lecture, the following items will be investigated:

• configuration management tools for software building (how to structure a project and automate its construction),

• version control management tools to track and log modifications to a piece of code or a whole project,

• automated documentation generator,

• object oriented programming and leveraging C++ and its Standard Template Library

• definition of data structures to handle the data generated by an application,

• interactions between various components using themselves various and different technologies.

A graphical application loosely inspired from an actual scientific imaging application, will be used throughout this
lecture to back our exploration.

CONTENTS 1

http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://en.wikipedia.org/wiki/Documentation_generator
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Data_structure

LAL-Info Documentation, Release 1.14-npac

2 CONTENTS

CHAPTER

ONE

AGENDA

Day 1 Bootstrapping the tools, first steps
with C++ programmation:

• bootstrap C++ development
environment

• versions management, dis-
cover subversion (svn)

• read a structured data file con-
taining a picture

• Introduction (En)
• Outils - Tools
• Subversion
• Good practices
• I/O (En)

Day 2
• read a structured data file con-

taining a picture
• discover the Qt framework

• Doxygen
• STL (En)
• C++ classes (En)
• Memory handling (En)
• C++ ops, fcts (En)
• Qt

Day 3
• classes and graphical shapes
• development within DrawQt

• DrawQt
• Inheritance, polymorphism

(En)

Day 4
• structured data: reading geo-

metrical shapes

Day 5 and more
• projects

The various steps which will be followed on during this hands-on:

1. presentation of development tools and tools to ease the development: make, CMT, C++, ...

2. build of a small C++ application to introduce the use of input/output (I/O) and of the standard library (STL)

3. introduction to a graphical framework

4. interconnect the user interface and the C++ user code. Study the whole connection chain (create a shared library,
declare C++ modules in the GUI, automatization with CMT)

5. definition of data structures to store graphical scenes. Definition of classes, creation of collections (leveraging
STL)

6. definition of a file storage format. Elaborate save-and-reload functions for the graphical scenes.

3

http://ens.lal.in2p3.fr/Presentations/intro.html
http://ens.lal.in2p3.fr/Presentations/outils.html
http://ens.lal.in2p3.fr/Presentations/tools.html
http://ens.lal.in2p3.fr/Presentations/subversion.html
http://ens.lal.in2p3.fr/Presentations/BonnesPratiques.html
http://ens.lal.in2p3.fr/Presentations/c++-io-stl.html
http://ens.lal.in2p3.fr/Presentations/Doxygen.html
http://ens.lal.in2p3.fr/Presentations/STL.html
http://ens.lal.in2p3.fr/Presentations/c++-classes.html
http://ens.lal.in2p3.fr/Presentations/declaration-variables-2010.ppt.htm
http://ens.lal.in2p3.fr/Presentations/c++-fct-op.html
http://ens.lal.in2p3.fr/Presentations/Qt.html
http://ens.lal.in2p3.fr/Presentations/DrawQt.html
http://ens.lal.in2p3.fr/Presentations/Classes.ppt.html
http://en.wikipedia.org/wiki/Software_framework

LAL-Info Documentation, Release 1.14-npac

4 Chapter 1. Agenda

CHAPTER

TWO

BOOTSTRAPPING

The first steps on how:

• to login

• to change your password

• to launch applications

are described on this page.

5

LAL-Info Documentation, Release 1.14-npac

6 Chapter 2. Bootstrapping

CHAPTER

THREE

GRADING

Your work will be graded considering the following 3 items:

1. quality of the produced code (8 pts):

• choice and respect of coding conventions

• choice of variables, methods, classes, ... naming

• code clarity

• usage of Doxygen

2. usage of tools (8 pts)

• CMT

• Subversion to manage and monitor the evolution of your work (regular, logical commits with sensible com-
ments)

• Doxygen to document your code

• tests of the code in a dedicated directory (with svn use)

3. the quality of work invested in the hands-on sessions as well as its progression (4 pts)

7

LAL-Info Documentation, Release 1.14-npac

8 Chapter 3. Grading

CHAPTER

FOUR

CS HANDS-ON AT LAL

4.1 Introduction to C++

spot
This section will introduce:

• the software configuration management,

• the C++ environment,

• how to put in place a work flow.

The red line of this section is the implementation - in C++ - of an application reading files holding either a complete
image or the definition of shapes which will be used later on during the hands-on session.

Such an image file can be found there while a file storing shapes can be found here. You should look at these files
to familiarize yourself with their structure.

• We’ll proceed in a step-by-step fashion: it is therefore very important to make sure you go through all these
stages.

• You should be extremely conscious about your style, that is, code clarity:

– define, use and follow coding conventions (i.e. code presentation)

– give sensible names to variables and functions

– properly document your code.

• Finally, it is paramount to regularly test your code to ensure a proper progression thru the exercize(s). In practice,
this means:

– systematically test your code after having implemented each and every feature

– once the feature has been verified to work properly, do not hesitate to improve the clarity of your code (by
e.g. refactor it or reformat it) and thus re-test it systematically after such a modification (“if it is not tested,
it’s broken”)

9

LAL-Info Documentation, Release 1.14-npac

4.1.1 Step 1: prepare your workarea (15 mins)

This first steps allows you to define and create your workarea with a tool to automatize tasks.

• CMT: we use a software configuration management tool - CMT - to automatize the necessary and needed steps
to rebuild an application (which is bound to evolve and become more and more complicated and involved).

• Recommanded editors: available in /Applications such as Emacs:

• Terminal: available from the dock (bottom of the screen), click on the Terminal icon:

• Structure and layout of your workarea:

– create a work directory under your home directory, called Project (Don’t choose another name in order
to stay consistent with this documentation)

– in the following, the $> stands for the prompt after which one can issue UNIX commands:

$> cd
$> mkdir Project

Throughout this hands-on session, you should make sure to properly organize your workarea by creating -if necessary-
proper directories. This allows to isolate and decouple development areas from one another, minimize naming conflicts
(e.g. files automatically generated by some tools with the same name) and this dramatically eases groking the overall
structure of the project.

One could also create a directory Project/Tests in which one would quickly evaluate and test a snippet of code
extracted from the documentation.

4.1.2 Step 2: building a simple application (1h)

This step illustrates the simple development cycle of an application

After having bootstrapped the workarea environment, this cycle holds the following steps:

1. source code editing

2. compilation and linking steps

3. execution of the application

4. test the application (or a subset of its components)

Generally speaking, the life cycle of an application can be described by cyclically iterating through the above men-
tionned steps. For example, the typical cycle consists in doing 1 (once) and then the sequence (2,3,4) in a loop.

Bootstrapping the workarea environment

Firstly, go under your work directory Project.

10 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

$> cd ~/Project

Warning: all your work shall happen under this Project directory (or one of its subdirectory.)

We will then setup a workspace with CMT dedicated to this exercize. This workspace shall be named Hello.

$> cmt create Hello v1
--
Configuring environment for package Hello version v1.
CMT version v1r20p20090520.
Root set to /Users/visiteur/tests.
System is Darwin
--
Installing the package directory
Version directory will not be created due to structuring style
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

Warning: a cmt directory has been created as a side-effect of running the cmt create command. All the
remaining work of this exercize shall be caried from under that directory.

$> cd Hello/cmt

Editing

We will copy the program given in example below under the directory ../src of our workspace previously created.
This will became a hello.cpp file.

After a close inspection of the sources, we notice it is the classical program which displays a simple message on the
screen. For the moment, you shouldn’t try too hard to understand what is performed on each line of this program.

/**
* @file hello.cpp

* @author LAL ens <ens@lal.in2p3.fr>

* @date March 2007

*
* First steps with a development environment.

* First program hello.cpp: display "Hello!" on standard output.

*/

#include <iostream>

int main(int argc, char **argv)
{

std::cout << "Hello!" << std::endl;

return 0;
}

Nevertheless, you should notice:

• the #include command, whose character # shall be placed at column number 1 of your source file. This
command allows to include the content of another file in your program. Here, we include the content of the file

4.1. Introduction to C++ 11

LAL-Info Documentation, Release 1.14-npac

iostream whose location is known to the compiler and which holds the declaration of the prototypes of the
functions used of inputs/outputs.

• the comments following the Doxygen format, labelled with the /** and */ tokens

Compilation and links edition

The application building proper will be handed over to CMT which will be tasked with correctly configuring and
activating a tool named make.

The means to this end is the requirements file which describes the application we want to build. Edit this file and
add the following line:

application hello hello.cpp

We can now ask CMT to run make. CMT will automatically take care of producing the needed configuration compo-
nents used by make.

CMT configuration w.r.t your environment:

issue this only once, for each new project
$> cmt config

Initialize CMT:

issue this everytime you modify the CMT environment
$> source setup.sh

Building:

$> cmt make
#CMT---> Info: Execute action make => make bin=../Darwin/
#CMT---> (Makefile.header) Rebuilding ../Darwin/Darwin.make
#CMT---> (Makefile.header) Rebuilding ../Darwin/setup.make
#CMT---> (Makefile.header) Rebuilding ../Darwin/constituents.make
#CMT---> (constituents.make) Rebuilding library links
#CMT---> (constituents.make) all done
#CMT---> (constituents.make) Building hello.make
#CMT---> Info: Application hello
#CMT---> (constituents.make) Starting hello
#CMT---> (hello.make) Rebuilding ../Darwin/hello_dependencies.make
#CMT---> compiling ../src/hello.cpp
#CMT---> building application ../Darwin/hello.exe
#CMT---> hello ok
#CMT---> (constituents.make) hello done
#CMT---> all ok.

Execution and tests

If all went well, we can now run and test our new application:

$> ../Darwin/hello.exe
Hello!

12 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.1.3 Step 3: Familiarization with C++ (2h)

We’ll modify the hello.cpp file by introducing a while loop which will display the previous welcome message
until a correct answer is given. This correct answer will terminate the program.

A few more precisions, in addition to these informations:

• right now don’t use using namespace std; but declare explicitly the namespace for each STL object;

• std::cout is the standard output. One uses the << operator to write into std::cout;

• std::cin is the standard input. One uses the >> operator to read from std::cin;

• std::endl is the manipulator allowing to insert an end-of-line character (insertion of such a character isn’t
implicit, you have to do it manually);

• use a boolean variable (of type bool whose values are either true or false) to manage the while loop;

• use variable of type std::string for the array of characters (std::string is defined in the <string>
header file)

• the std::string equality comparison operator in C++ is ==

• the operator to test if 2 std::strings are not equivalent is !=;

• the logical operators AND and OR are, respectively, && and ||.

The building and testing of the application is performed as in the previous stage.

You should make sure to update the comments inside the program.

Typically, one should get the following output:

$> ../Darwin/hello.exe
Hello!
continue? yes
Hello!
continue? yes
Hello!
continue? yes
Hello!
continue? yes
Hello!
continue? no
Bye.

4.1.4 A few references

These might help in case you are a bit lost with C++:

1. A C++ reference site

2. Lectures from J.F Rabasse.

3. An introduction to the C++ language is available.

It is by no means exhaustive but is a short introduction to a few elements of C++ needed throughout this
hands-on.

4.1. Introduction to C++ 13

http://en.cppreference.com/w/cpp
http://ens.lal.in2p3.fr/Presentations/langage-cplus.ps
http://ens.lal.in2p3.fr/Presentations/cplusplus2/sld001.htm

LAL-Info Documentation, Release 1.14-npac

4.2 First steps with subversion (svn)

spot
With this exercize we’ll investigate:

• version(s) management

• the tool svn

4.2.1 Reminder

You should have read the slides about subversion to be able to complete this exercize.

Warning: When issuing an svn commit command, always make sure to verify the commit was successful.
A typical error is to run the command from the wrong directory. No modification is then committed but this isn’t
considered as an error by subversion. For example:

$> svn commit -m "svn doc modification" .
Sending trunk/src/svn.rst
Transmitting file data .
Committed revision 666.
$>
==> the commit was successful

$> svn commit -m "svn doc modification" .
$>
==> no message nor ack. from svn: OOPSIE !

You can check the state of your repository in the Trac browser or directly via http .

4.2.2 Creating your project repository (15 min)

The first step consists in creating your project in the Etudiants svn repository laying out it the right way Subversion
Best Practices recommends to structure a repository with three subdirectories: /trunk, /branches, and /tags.

In this very first step we will act directly onto the svn directory getting an URL as argument for svn commands.
Then in the later steps we will work in our local workarea getting local file arguments.

• verify you can talk to the svn server and verify that your repository is empty (replace ens<n> with the correct
team name, reply ’p’ if asked about the certificate, the password is the one specified during the svn lecture,
this isn’t the one from your local account):

$> svn ls https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>

• create your project Hello in your repository:

$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello \
-m "Creation of Hello project"

• create the standard layout:

14 Chapter 4. CS hands-on at LAL

http://ens.lal.in2p3.fr/Presentations/subversion.html
https://trac.lal.in2p3.fr/Etudiants/browser/
https://svn.lal.in2p3.fr/projects/Etudiants/
http://ens.lal.in2p3.fr/Presentations/subversion.html

LAL-Info Documentation, Release 1.14-npac

$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello/trunk \
https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello/branches \
https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello/tags \
-m "Proper layout for Hello project"

• verify:

$> svn ls -R https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>

• finally import your Hello code into the trunk directory:

$> cd ~/Project/Hello
$> svn import . https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello/trunk \

-m "Initial import"

• verify again:

$> svn ls -R https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>

4.2.3 Initializing the workarea environment (15 min)

The next step consists in initializing your workarea directory which will hold a copy of your previously imported
project Hello.

• go under your Project directory and rename your unversioned directory:

$> cd ~/Project
$> mv Hello Hello-unversioned

• create a working copy (checkout) of the trunk branch of your previously imported project Hello - notice
that the local name is your project name:

$> svn checkout https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Hello/trunk Hello

• verify that your workarea is well connected to the right repository and notice the svnmetadata directories .svn
at each level of your hierarchy project:

$> cd Hello
$> svn info
$> ls -alR

• clean the directory:

$> rm -r ~/Project/Hello-unversioned

• check the state of your workarea - you should be synchronized:

$> svn status .

4.2.4 Modifying files (5 min)

During this exercize, we’ll modify one or more files and save (or commit in svn-speak) these modifications into the
repository. We’ll first use the traditional cp and rm commands and then their svn counterparts in order to compare

4.2. First steps with subversion (svn) 15

LAL-Info Documentation, Release 1.14-npac

their different behaviours. This operation can be repeated many times to artificially increase the history of commands
(for the next step.)

When we save the modifications to your repository, you have to fill in a message - with no accentual letters - justifying
the modifications.

Go under the src directory which we just added to our svn repository.

• modify an existing file (e.g. add a comment to hello.cpp), check its effect and save the modification into the
repository:

$> # edit hello.cpp
$> svn status
M hello.cpp
$> svn commit -m "first modification applied to hello.cpp"

• copy an already existing file (without using svn cp), check its effect and save the modification into the repos-
itory:

$> cp hello.cpp hello_world.cpp
$> svn status
? hello_world.cpp
$> svn add hello_world.cpp
$> svn commit -m "adding hello_world.cpp"

The ? means the file isn’t (yet) tracked or known to the repository but does exist in your local directory.

• delete the file previously added (but without using svn rm), check its effect and save the modification in the
repository:

$> rm hello_world.cpp
$> svn status
! hello_world.cpp
$> svn rm hello_world.cpp
$> svn commit -m "deleting hello_world.cpp"

The ! means the file exists in the repository but not in your local area.

• copy an already existing file (using svn cp), compare its effect with previous commands and save the modifi-
cation in the repository:

$> svn cp hello.cpp hello_world.cpp
$> svn status
A + hello_world.cpp
$> svn commit -m "adding hello_world.cpp with svn-cp"

• delete the file (using svn rm), compare its effect with previous commands and save the modification in the
repository:

$> svn rm hello_world.cpp
$> svn status
D hello_world.cpp
$> svn commit -m "deleting hello_world.cpp with svn-rm"

• now, it is up to you to suppress the directory Hello/Darwin...

$> svn rm <????>

16 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.2.5 Listing modifications (15 min)

During the following steps, we’ll experiment with 2 usages of the versions’ history which is stored in the repository:
visualizing the differences between versions and rolling back to an older version. To use the history, one usually begins
with dumping the list of revisions available for inspection together with their (hopefully descriptive and informative)
commit message.

• display the modifications (default mode):

$> svn log

• dump the modifications (detailed/verbose output):

$> svn log -v

• display the modifications for a particular file:

$> svn log hello.cpp

• compare the differences.

4.2.6 Visualizing the differences (15 min)

We’ll investigate 2 use-cases for displaying differences:

1. between the local workarea and the repository,

2. between 2 revisions in the repository.

• dump the differences between the local workarea and the last revision in the repository:

$> svn diff hello.cpp

• display the differences between the local workarea and an arbitrary revision in the repository. Compare with the
previous result:

select a revision ’n’ in the history...
$> svn diff -r n hello.cpp

• display the differences between 2 revisions m and n in the repository (the last revision is always named HEAD).
The file hello.cpp should exist in both revisions (check the effect if this wasn’t the case):

$> svn diff -r m:n hello.cpp

• repeat the previous step using the web interface WebSVN. Go to this URL:
https://trac.lal.in2p3.fr/Etudiants/browser and browse to the hello.cpp file from your branch. Click
on the “Journal des révisions”, select 2 revisions in the column “diff” and click on “Voir les différences”.

4.2. First steps with subversion (svn) 17

https://trac.lal.in2p3.fr/Etudiants/browser

LAL-Info Documentation, Release 1.14-npac

4.2.7 Rolling back to a previous revision (45 min)

A rather interesting usage for keeping an history of revisions is the ability to roll back to an earlier version of a file or
a set of files.

• revert the modifications previously applied to your workarea and roll back to the last revision in the repository:

$> svn status
... check that hello.cpp has indeed been modified
$> svn revert hello.cpp

• roll back to a particular revision n in the repository in order to start again from a ‘right version’ - you first revert
the modifications applied to your workarea - HEAD means the latest revision in the repository:

$> svn revert hello.cpp
$> svn merge -r HEAD:n hello.cpp
$> svn status

• roll back to revision n of the repository, keeping the local modifications:

... edit and modify
$> svn merge -r HEAD:n hello.cpp
$> svn status
check for conflicts and, if any, resolve them
$> svn commit -m "revert to revision n for hello.cpp"

4.2.8 Resurrecting a deleted file (20 min)

Some times one want to get back a deleted file the way the file is added back to the repository together with it’s history.
Hence future ‘svn log‘ on this file will traverse back through the file’s resurrection and through all the prior history.

• add a file, edit it and check in several times

$> echo "Test 1" > foo.txt
$> svn add foo.txt
$> svn ci -m "Added foo.txt"
$> echo "Test 2" >> foo.txt
$> svn commit -m "First modification of foo.txt"
$> echo "Test 3" >> foo.txt
$> svn commit -m "Another modification of foo.txt"
$> svn update
$> svn log

• then delete it

$> svn delete foo.txt
$> svn commit -m "Deleted foo.txt"

• edit hello.cpp and check in several times too

$> echo "// Test 4" >> hello.cpp
$> svn commit -m "Added some comments" hello.cpp
$> echo "// Test 5" >> hello.cpp
$> svn commit -m "Added some comments" hello.cpp

• now look for the revision N in which was deleted the file to be resurrected

18 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

$> svn update
$> svn log --verbose

• add the file to the repository

$> export REPO=https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>
$> svn copy $REPO/Hello/trunk/src/foo.txt@<N-1> ./foo.txt
$> svn status
$> svn commit -m "Resurrected foo.txt from revision N-1"

Note that the same technique works just as well for resurrecting deleted directories.

4.2.9 Using a branch (30 min)

A branch is a “cheap copy” of a subtree (ie, the trunk or another branch) of a SVN repository. It works a little bit like
symbolic links on UNIX systems, except that once you make modifications to files within a SVN branch, these files
evolve independently from the original files which were “copied”. When a branch is completed and considered stable,
it must be merged back to its original copy.

Now you will create an experimental branch in order to test a new implementation without betting your entire project.
Experimental branches may be abandonned when the experiment fails. But if they succeed you can easily merge that
branch with the trunk.

In our case our refactoring will be simple: we want to test the instruction ’using namespace std;’ in order to
get rid of all std:: ...

• define a environment variable to ease the repository calls and verify:

$> export REPO=https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>
$> svn ls $REPO

• be careful to start from a well synchronized state:

$> cd ~/Project/Hello
$> svn st
if needed check in or revert

• create your branch:

$> svn copy $REPO/Hello/trunk \
$REPO/Hello/branches/TRY-namespace-std \
-m "Branch from trunk to test namespace std"

• transforms your current working copy to reflect your experimental branch:

$> svn switch $REPO/Hello/branches/TRY-namespace-std
$> svn info

• edit and check in as often as needed:

$> svn ci -m "Use of ’using namespace std;’" .
$> svn info

• switch back to the trunk:

$> svn switch $REPO/Hello/trunk
$> svn info

4.2. First steps with subversion (svn) 19

LAL-Info Documentation, Release 1.14-npac

• finally merge your experimental branch to the trunk:

$> svn merge $REPO/Hello/trunk \
$REPO/Hello/branches/TRY-namespace-std

$> svn ci -m "Merge TRY-namespace-std branch with trunk" .

• you may delete your experimental branch, you don’t need it anymore. Of course, your branch isn’t really gone,
it’s simply missing from the HEAD revision. If you use svn checkout, svn switch or svn list with
earlier revision number, you will still see your branch.

$> svn delete $REPO/Hello/branches/TRY-namespace-std \
-m "Removed branch TRY-namespace-std"

Get the log with additional information from merge history and spot the branch revisions
$> svn up && svn log --use-merge-history .
$> svn ls $REPO/Hello/branches/ -r<nn>

4.2.10 Using a tag (10 min)

A tag is just a ‘snapshot‘ of a project in time, named in a human-friendly way.

• if not done define a environment variable to ease the repository calls and verify:

$> export REPO=https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>
$> svn ls $REPO

• be careful to start from a well synchronized state:

$> cd ~/Project/Hello
$> svn st
if needed check in or revert

• create your tag:

$> svn copy $REPO/Hello/trunk \
$REPO/Hello/tags/SVN-exercise
-m "Tagging the end of the SVN exercise."

• verify:

$> svn ls -R $REPO/Hello

Normally and by convention one never works in a tag branch.

4.2.11 Parting notes

Do not forget to check, at the last session, that all your work is indeed correctly committed and saved in your svn
repository.

i.e.:

• create an empty directory in which you’ll export -with the ad hoc command- all of the performed exercizes,

• recompile everything,

• check they all run smoothly and correctly.

20 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.3 Reading an image from a file

spot
This exercize describes in a step-by-step fashion how to write a program reading an image from a file.

You should strive for systematically using all the tools you’ve learned so far:

• CMT

• svn

Do not forget to also systematically test (many times) and after each step the behaviour of your program. Do not
hesitate to decompose a step into smaller intermediate ones.

This section should allow you to remember the basics of object oriented programming and of C++ before tackling the
DrawQt project. All the steps should be rigorously followed, if, however, some detail is escaping you, do not hesitate
to call for help.

Note: Concerning the compilation errors, remember to head toward the page listing the main and usual issues.

4.3.1 Step 1: environment configuration (20 min)

This first step -a variant of hello world- installs, tests and validates the projects within your development environment.
In our case, the project Image is managed with CMT and subversion.

We’ll start with configuring our svn environment:

$> cd ~/Project
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Image -m "Added Image project"
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Image/trunk -m "Added Image project"
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Image/branches -m "Added Image project"
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Image/tags -m "Added Image project"

-m "Added Image project"

We’ll need the Interfaces package to access and use the system libraries. Fetch it from the svn repository called
Enseignement:

$> cd ~/Project
$> svn export https://svn.lal.in2p3.fr/projects/Enseignement/LAL-Info/tags/head/Interfaces \

Interfaces

Now, create your new CMT package:

$> cmt create Image v1
$> svn co https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/Image/trunk Image
$> cd Image

Edit the requirements file like so:

1 package Image
2

3 # for basics system libraries
4 use Platform v1r* ${HOME}/Project/Interfaces
5

6 # to build an application readImage.exe

4.3. Reading an image from a file 21

http://ens.lal.in2p3.fr/Presentations/subversion.html

LAL-Info Documentation, Release 1.14-npac

7 application readImage readImage.cpp
8

9 # define an action ’read’ to execute readImage.exe
10 action read $(bin)/readImage.exe

Then, edit the file src/readImage.cpp along these lines:

1 /**
2 * @file readImage.cpp
3 * @author LAL ens <ens@lal.in2p3.fr>
4 * @date February 2006
5 *
6 * @brief Read an image from a file image.txt
7 *
8 *
9 */

10 #include <iostream>
11

12 int main (int argc, char **argv)
13 {
14 // print an informative message on the screen
15 // ...
16

17 return (0);
18 }

Now we are left with building and running/testing the application:

$> cmt make
$> cmt read

At this point, you can commit and save your first version of the program in svn, after having removed the not-
important files (history-wise, i.e. the files you do not wish to track in svn):

$> rm -r ../Darwin
$> rm ../cmt/Makefile ../cmt/*.csh ../cmt/*.sh
$> cd ..

Note: You can also instruct svn to ignore certain files or directories by editing the svn configuration file
~/.subversion/config along the section [miscellany] :

• uncomment the global-ignores variable (has to be defined on one line)

• add in it definition all patterns describing the files you won’t track in svn; i.e. those generated by CMT:

– Makefile, setup.* and cleanup.*, the Darwin directory

Finally, add the current tree to svn, save and synchronize your workarea and the repository:

$> svn add .
$> svn commit -m "Added Image package"
$> svn update

You can check the repository is up-to-date using the by now well known svn status command in the correct
directory.

22 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.3.2 Step 2: Accessing a data file (20 min)

Create a directory to hold the input data:

$> mkdir ./data

Retrieve the Image file with Ctrl-click (and then Save the link or Enregistrer la cible or Telecharger le fichier...).
Save the file under the ../data directory.

The structure and format of this file is described over there.

Commit the data file in svn:

$> svn add data
$> svn commit -m "adding data directory" ./data

Here are the snippets of code which deal with opening the data file:

1 ...
2 #include <fstream>
3 ...
4

5 const std::string filename = "../data/image.txt";
6

7 std::ifstream f;
8 f.open(filename.c_str());
9

10 if (!f.is_open()) {
11 std::cout << "error. file [" << filename << "] could not be found."
12 << std::endl;
13 f.close();
14 return (0);
15 }
16

17 std::cout << "file: [" << filename << "] open." << std::endl;
18 f.close();
19 ...
20 return (0);

More detailed informations about input/output functions can be found there.

Now, we can build and test our application like so:

$> cmt make
$> cmt read

Eventually, we commit and save into svn.

Note: remember we work in the src directory...

4.3.3 Step 3: reading the data file token-by-token (30 min)

The following snippet of code shows how to loop over the content of a file, simply reading it word by word:

1 #include <iostream>
2 #include <fstream>
3 #include <string>

4.3. Reading an image from a file 23

LAL-Info Documentation, Release 1.14-npac

4

5 int main (int argc, char **argv)
6 {
7 std::cout << "Application readImage." << std::endl;
8

9 const std::string filename = "../data/image.txt";
10 std::ifstream f;
11 f.open(filename.c_str());
12

13 if (!f.is_open()) {
14 std::cout << "error. file [" << filename << "] could not be found."
15 << std::endl;
16 f.close();
17 return (0);
18 }
19

20 std::string word;
21 std::cout << "file: [" << filename << "] open." << std::endl;
22

23 // put the word-by-word reading loop here and
24 // print out the word which has been read
25

26 while (!f.eof()) {
27 //...
28 }
29

30

31 return (0);
32 }

Warning: The reading function will only return a word back to you as long as the end of the file is not reached.
Ergo, you shouldn’t forget to test for that edge case.

Build this application, test it and commit your changes in svn once everything is behaving correctly.

4.3.4 Step 4: creating a class named Image (15 min)

Before going further in the implementation of our reading application, we’ll create a C++ class Image. This class
will allow us to properly isolate the data members from the operations associated with or applied on our images. This
is one of the pillars of object-oriented programming.

A presentation on C++ classes is available here.

In order to cleanly separate the structure of the class itself from its implementation, we’ll create 2 files:

• the header file include/image.h (create the include directory):

1 /**
2 * @file image.h
3 * @brief File holding the description of the class Image
4 * @author LAL ens <ens@lal.in2p3.fr>
5 * @date February 2009
6 */
7

8 #ifndef PROJECT_IMAGE_H
9 #define PROJECT_IMAGE_H 1

24 Chapter 4. CS hands-on at LAL

http://ens.lal.in2p3.fr/Presentations/Classes.ppt.html

LAL-Info Documentation, Release 1.14-npac

10

11 /**
12 * @brief
13 */
14 class <Enter the name of your class>
15 {
16 public:
17 /** @brief ...
18 */
19 Image();
20

21 /** ...
22 */
23 ~Image();
24 };
25

26 #endif // !PROJECT_IMAGE_H

• the implementation file src/image.cpp:

1 /**
2 * @file image.cpp
3 * @brief ...
4 * @date February 2009
5 */
6

7 #include "image.h"
8

9 Image::Image()
10 {
11 }
12

13 Image::~Image()
14 {
15 }

You need to modify the cmt/requirements file for the build system to be aware of these new files:

1 package Image
2

3 # add the ’include’ directory to the list of directories
4 # the compiler should know about
5 include_dirs $(IMAGEROOT)/include
6

7 # for basics system libraries
8 use Platform v1r* ${HOME}/Project/Interfaces
9

10 # to build an application readImage.exe
11 application readImage readImage.cpp image.cpp
12

13 # define an action ’read’ to execute readImage.exe
14 action read $(bin)/readImage.exe

Rebuild everything, test and commit in svn.

4.3. Reading an image from a file 25

LAL-Info Documentation, Release 1.14-npac

4.3.5 Step 5: isolate the reading of a file in a dedicated method (1h)

In this step, we’ll isolate the reading proper of a file into a method of the class Image. (Don’t forget to add all
#include if necessary) This method will later on be integrated and leveraged during the hands-on session on
DrawQt.

You shall add the method ReadFile() with the following signature:

bool ReadFile(const std::string& filename)

to your new class Image; the method ReadFile() will return a boolean in order to indicate whether the file scan
ran into an error or not.

When this work is completed, the main() function of your program readImage should only contain:

• the instantiation of an object of the class Image

• the call to the method ReadFile()

Note that the error handling is not mandatory yet (this will be for a later step.)

Build, test and commit in svn.

4.3.6 Step 6: interpreting the data from the image file (1h)

Using the informations about the image file format documentation, we’ll re-implement the reading of the file. Previ-
ously, in step 3 we were reading the input file ‘word by word’ (or ‘token by token’.)

But now that the format of the image file and its grammar is known, we build upon it to greatly simplify the reading
of such files.

1. there won’t be any need for the while loop anymore

2. the loop will be replaced by a serie of:

read a word
if not an expected word:

return an error
read next word

3. memorize the values of HEIGHT and WIDTH in new data member variables called, respectively, m_nX and
m_nY

4. iterate through the content of pixels of this image and display on screen the values, in a line-by-line fashion in a
new method Image::Print().

Note: To read next token into a word you have already seen the f >> my_word method; if you want to read the
next token into an int, you could also use the same method f >> my_int

4.3.7 Step 7: data storage (45 min)

1. store the data in a one-dimension private array you’d call m_data. you should use the std::vector class.

2. then, change to a 2-D array (use a std::vector of std::vector)

26 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.3.8 Step 8: documenting the package Image (45 min)

This exercize will ask you to go back to your Image package and comment it as best as possible with the tool
Doxygen.

We will now improve our application with some documentation generated with doxygen. In order to ease the process
of documenting the code, we’ll first add a few rules to CMT so it can steer doxygen.

Open the cmt/requirements file and add the following lines at the end:

1 # define an action to generate the documentation
2 document doxygen doc -group=documentation TO=../doc

Now, we have to tell CMT that it has to read is requirement file :

$> cmt config

We’ll also have to create a doc directory to store this documentation. Create it as: image/doc.

Now, we have to configure doxygen thanks to a dedicated file named Doxyfile. This file is available here, save it
under this new doc directory.

We can build and browse the documentation like so:

$> cmt make doc
$> open ../doc/html/index.html

We can now modify the documentation of our code and inspect these modifications once the documentation has been
regenerated. Once the result looks satisfying, save and commit the modifications.

Note: It isn’t necessary to add ALL the documentation files to svn. Indeed, these output files can be automatically
generated from the Doxyfile. It is thus sufficient to just add that file to the repository.

$> svn add ../doc
$> svn revert --depth infinity ../doc/html
$> svn commit -m "added the doc generation with Doxygen management"

You could also update your ~/.subversion/config file in order to definitely ignore the html directory.

4.4 Managing a graphical interface with Qt

spot
This session will detail in a step-by-step fashion how to write an application leveraging the Qt framework and then
how to modify a graphical user interface such as DrawQt in order to add buttons which select various and different
graphical shapes.

You should strive for systematically using all the tools you know, such as:

• CMT

• svn

• Doxygen and the proper syntax to decorate your code with comments (which are then picked up by Doxygen)

4.4. Managing a graphical interface with Qt 27

http://ens.lal.in2p3.fr/Presentations/Doxygen.html

LAL-Info Documentation, Release 1.14-npac

4.4.1 Step 1: a first Qt application (5 min)

This first exercize is a variation over hello world.

We start with configuring the svn environment (replace the ens<n> with your team id. e.g. ens2)

$> cd ~/Project
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/TpQt
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/TpQt/trunk \

https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/TpQt/branches \
https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/TpQt/tags \
-m "Create TpQt project"

$> svn co https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/TpQt/trunk TpQt

For this exercize, we’ll need the Interfaces package to gain access to the system libraries as well as the Qt
environment. If the directory Project/Interfaces isn’t already present, create it like so:

$> cd ~/Project
$> svn export https://svn.lal.in2p3.fr/projects/Enseignement/LAL-Info/tags/head/Interfaces \

Interfaces

Then, create a new project with CMT:

$> cd ~/Project
$> cmt create TpQt v1
$> cd TpQt
$> svn add .

The last piece of boilerplate is the cmt/requirements file which should look like:

1 package TpQt
2

3 # to gain access to doxygen
4 use Platform v1r* ${HOME}/Project/Interfaces
5

6 # for the Qt environment
7 use Qt v2r* ${HOME}/Project/Interfaces
8

9 # tools for the build (shared libraries, rules, ...)
10 use dld v2r* ${HOME}/Project/Interfaces
11

12 # add our directory of headers for the compiler
13 include_dirs $(TPQTROOT)/include
14

15 # rule to create a ’moc’ file (needed for the code generation for
16 # the signal/slots events)
17 document moc moc_myWindow \
18 FROM=../include/myWindow.h \
19 TO=../src/moc_myWindow.cpp
20

21 # describe how the library holding our class shall be built
22 library TpLib \
23 ../src/myWindow.cpp \
24 ../src/moc_myWindow.cpp
25

26 # arguments and options for the compilation and link of ’myWindow’ class
27 macro lib_TpLib_cflags " ${Qt_cflags}"
28 macro lib_TpLib_cppflags " ${lib_TpLib_cflags}"
29 macro TpLib_shlibflags " ${Qt_linkopts} ${dld_linkopts}"
30 macro TpLib_linkopts " -L${TPQTROOT}/$(Platform_bin) -lTpLib" \

28 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

31 WIN32 " ${TPQTROOT}\$(Platform_bin)\TpLib.lib"
32

33 macro_append QtTestlinkopts " ${TpLib_linkopts}"
34

35 # describe how the QtTest.exe application shall be built
36 application QtTest QtTest.cpp
37

38 # boilerplate needed to package the application for MacOS
39 document darwin_app TpQt FROM=QtTest TO=../app/QtTest
40

41 # update the DYLD_LIBRARY_PATH environment variable
42 # (needed by the MacOS dynamic linker to find our new shared library)
43 path_append DYLD_LIBRARY_PATH "" \
44 Darwin "${TPQTROOT}/$(Platform_bin)"
45

46 # rule to create the documentation
47 document doxygen doc -group=documentation TO=../doc
48

49 ## EOF ##

Note: Notice the line:

use Qt v2r* Interfaces

at the beginning of the requirements file. This line tells CMT to retrieve (and use) the definitions and configurations
relevant for the Qt/v2r* package which can be located thanks to the $CMTPATH environment variable. (this env.
variable has been automatically defined for you when the Terminal is launched – thanks to the configuration put in
the .zshrc profile file)

Now comes the task of creating the myWindow class. First the header file ../include/myWindow.h:

1 #ifndef TPQT_MYWINDOW_H
2 #define TPQT_MYWINDOW_H 1
3

4 // qt related includes
5 #include <QtGui/QMainWindow>
6 #include <QtGui/QPushButton>
7

8 /**
9 * @file myWindow.h

10 * @author LAL ens <ens@lal.in2p3.fr>
11 * @date March 2007
12 *
13 * @brief first class HelloWorld in Qt
14 *
15 *
16 */
17 class myWindow : public QMainWindow
18 {
19 // the macro Q_OBJECT is mandatory to hint Qt with the signal/slot
20 // communication between (instances of) classes.
21 Q_OBJECT
22

23 public:
24

25 /** @brief Constructor of our main class
26 * @param parent : Parent widget of the class. In our case this will be the
27 * main window (so the parent will be "NULL") "NULL"

4.4. Managing a graphical interface with Qt 29

LAL-Info Documentation, Release 1.14-npac

28 * @param fl : Creation flags for the window. This is useful to create a
29 * window which can’t be resized, or without a ’quit’ button, etc...
30 */
31 myWindow(QMainWindow* parent = 0, Qt::WFlags fl = Qt::Window);
32

33 /** @brief Destructor.
34 */
35 virtual ~myWindow();
36

37 private:
38

39 /** @brief The ’hello’ PushButton
40 */
41 QPushButton* m_hello;
42

43 };
44

45

46 #endif // !TPQT_MYWINDOW_H

Then the implementation, which we save under ../src/myWindow.cpp:

1 /**
2 * @file myWindow.cpp
3 * @author LAL ens <ens@lal.in2p3.fr>
4 * @date March 2007
5 *
6 * @brief first class HelloWorld in Qt
7 *
8 *
9 */

10

11 // Interface
12 #include <myWindow.h>
13

14 /** @brief Constructor for the myWindow class
15 *
16 * Our class, in order to be a display window, needs to inherit from the
17 * @c QMainWindow class of the Qt framework.
18

19 * @param parent : Parent widget of the class. In our case, this will be the
20 * main window, so the parent is actually a NULL pointer.
21 * @param fl : Creation flags for the window. This is useful to create a
22 * window which can’t be resized, or without a ’quit’ button, etc...
23 */
24 myWindow::myWindow(QMainWindow* parent, Qt::WFlags fl)
25 : QMainWindow(parent, fl)
26 {
27 // Create the push button
28 m_hello = new QPushButton(...);
29 // To complete the above line, heed towards the Qt documentation
30 // the documentation of QPushButton is available here:
31 // http://doc.qt.digia.com/4.0/qpushbutton.html
32

33

34 // display our button (in a central position)
35 setCentralWidget(m_hello);
36 }

30 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

37

38

39 /**
40 * @brief Destroy an instance of myWindow (and all the objects it may hold)
41

42 * i.e. the button we created previously.
43 */
44 myWindow::~myWindow()
45 {
46 delete m_hello;
47 }

Eventually comes the main function, which is put in QtTest.cpp:

1 /**
2 * @file QtTest.cpp
3 * @author LAL ens <ens@lal.in2p3.fr>
4 * @date March 2007
5 *
6 * @brief first HelloWorld en Qt
7 *
8 *
9 */

10

11 // qt-related includes
12 #include <QtGui/QApplication>
13 #include <QtGui/QPushButton>
14

15 // local includes
16 #include "myWindow.h"
17

18 int main(int argc, char *argv[])
19 {
20 QApplication app(argc, argv);
21 myWindow * mw = new myWindow;
22 mw->show();
23 return app.exec();
24 }

Before being able to build and test our new application, we need to execute the cmt/setup.sh script which will
correctly configure a few environment variables (Qt environment, libraries handling, ...) Heed towards the cmt
directory and issue:

$> cmt config
$> source ./setup.sh

Now you can modify the myWindow.cpp file to make it compilable... Then:

$> cmt make
$> cmt make doc

Important: During the execution of these 2 commands and during this whole session (and all the following ones!)
do NOT just look at their output without trying to analyze the messages logged on the screen. Do not forget that
if a syntax error was inserted in your code or if a file is missing, these commands won’t clobber (nor replace) the
previously built executable (or documentation), thus one might (wrongly!) be led to believe no modifications were
taken into account by the build system...

Finally, we can test the application (via 2 methods):

4.4. Managing a graphical interface with Qt 31

LAL-Info Documentation, Release 1.14-npac

• from the Finder application (i.e. the file browser), launch the file ../app/QtTest.app, or

• from your Terminal:

$> open ../app/QtTest.app

Warning: The text output from the standard output std::cout are not shown in a graphical application.
Indeed, such an application works in a completely decoupled fashion from the Terminal. However, it is possible
to retrieve these outputs via the system console:

$> open /Applications/Utilities/Console.app

This console is used for all the system outputs so it is hardly surprising if you find a great number of messages
coming from other applications. It is possible to filter the messages (top-right), though. (beware: it isn’t case
sensitive.)

We can then save and commit this first and initial version in our svn repository, after having removed the files we
don’t care to track and version:

$> rm -r ../Darwin ../doc ../app
$> rm Darwin.make Makefile *.csh *.sh
$> cd ..
$> svn add .
$> svn commit -m "initial version" .

We can then go back under the src directory where all the source files we modify are located:

$> cd ./src

4.4.2 Step 2: attaching a signal/slot to a button (10 min)

As you may have noticed, no action was associated with the button of the previous application. In order to fix this
issue, we’ll use the signal/slot mechanism of Qt.

• the emitting object will be the hello button,

• the signal being sent will be the mouse-click action,

• the receiving object will be the myWindow class,

• the slot to which the signal will be sent will be the close() method of the class QMainWindow.

To leverage all of this machinery, it’s sufficient to add the following line, just after the creation of the button, in
myWindow.cpp:

1 // Connection of the signal ’clicked()’ (from the button)
2 // to the slot ’close()’ (of the QMainWindow)
3 connect(m_hello, SIGNAL(clicked()), this, SLOT(close()));

As usual, rebuild, test and then commit in the svn repository:

$> cmt make
$> cmt make doc
$> open ../app/QtTest.app
$> cd ..
$> svn commit -m "adding a signal/slot communication"

32 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

Note: It sometimes so happens that the compiler doesn’t completely take into account your last modification. In this
case, the application will compile successfully but will crash at runtime (when you execute it.) This is because the
automatically generated moc_myWindow file hasn’t been regenerated nor recompiled. To fix this, just delete it (in
src) and recompile (it should be regenerated anew.)

4.4.3 Step 3: adding a menu (15 min)

We’ll now add a menu to our window.

Warning: On a Mac, menus are not displayed together with the window (at the top of the window as for most of
the other graphical operating systems) but at the top of the screen.

Add the following includes in your myWindow.cpp file:

#include <QMenu>
#include <QMenuBar>

The following code is to be put in place of the previous version of the constructor of myWindow:

1 /** @brief Constructor for the myWindow class
2 *
3 * Our class, in order to be a display window, needs to inherit from the
4 * @c QMainWindow class of the Qt framework.
5

6 * @param parent : Parent widget of the class. In our case, this will be the
7 * main window, so the parent is actually a NULL pointer.
8 * @param fl : Creation flags for the window. This is useful to create a
9 * window which can’t be resized, or without a ’quit’ button, etc...

10 */
11 myWindow::myWindow(QMainWindow* parent, Qt::WFlags fl)
12 : QMainWindow(parent, fl)
13 {
14 // Create the push button
15 m_hello = new QPushButton("Hello world!");
16 connect(m_hello, SIGNAL(clicked()),
17 this, SLOT(close()));
18

19 // display our button (in a central position)
20 setCentralWidget(m_hello);
21

22 // create a menu bar
23 QMenuBar *menubar = new QMenuBar(this);
24

25 // create a "File" menu
26 QMenu *fileMenu = new QMenu("File");
27

28 // add this file menu to the main menu bar
29 menubar->addMenu(fileMenu);
30

31 // add a few items to the file-menu
32 // - an ’open’ item
33 fileMenu->addAction("Open");
34

35 // - a separator

4.4. Managing a graphical interface with Qt 33

LAL-Info Documentation, Release 1.14-npac

36 fileMenu->addSeparator();
37

38 // - a ’quit’ item which we connect to the ’close’ slot of the main window
39 // Do not use the world "Quit" on mac OSX, see here why :
40 // http://doc.qt.nokia.com/4.7-snapshot/qmenubar.html#qmenubar-on-mac-os-x
41 fileMenu->addAction("Bye application", this, SLOT(close()));
42

43 // finally, add the menu bar to the main window
44 setMenuBar(menubar);
45 }

Recompile, test and commit in svn.

4.4.4 Step 4: adding a new slot (15 min)

We wish now to add our own action when someone clicks on a menu.

Thus, we’ll first start by adding an action to our menu Open which we’ll connect to a method modify() (defined
later on.)

After the creation of the menu Open, add the following lines:

1 // add a new item "Modify" which we connect to the method modify()
2 fileMenu->addAction("Modify", this, SLOT(modify()));

Then, we add the method modify() which will be called whenever the menu Modify is clicked on. This method
will be called by an event (a click on the menu), so it isn’t a regular C++ method but really a new slot which we
need to define.

In the myWindow.h header file, add the following lines in the body of the class:

1 public slots:
2 void modify();

Now, we need to implement it, in the myWindow.cpp source file:

1 /** @brief This method modifies the text of the ’hello’ button.
2

3 * Documentation about @c QPushButton is available here:
4 * http://doc.qt.digia.com/4.0/qpushbutton.html
5

6 * @c QPushButton is a special kind of button.
7 * Indeed, buttons can be PushButtons, CheckButtons, RadioButtons, etc...
8 * It inherits the properties of an abstract button type: QAbstractButton.
9

10 * Documentation about @c QAbstractButton is available here:
11 * http://doc.qt.digia.com/4.0/qabstractbutton.html
12

13 */
14 void myWindow::modify()
15 {
16 // Complete this line according to the documentation
17 m_hello->setText(...);
18 }

Rebuild, test and commit in svn.

34 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.5 DrawQt

4.5.1 Step 1: installation (30 min)

As for the previous sessions (reading an image and Qt,) we need to:

• create a new workarea DrawQt under your work directory Project,

• fetch the initial version of the DrawQt code – called DrawQtBase – from the Enseignement repository:

$> cd Project
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/DrawQt/trunk -m "Added DrawQt project"
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/DrawQt/branches -m "Added DrawQt project"
$> svn mkdir https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/DrawQt/tags -m "Added DrawQt project"
$> svn co https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/DrawQt/trunk DrawQt

$> svn export https://svn.lal.in2p3.fr/projects/Enseignement/LAL-Info/tags/2011/DrawQtBase \
DrawQt

Note: svn export exports a project from a repository without retrieving the revisions management. Indeed,
we’ll modify this code base and commit it back into our own svn repository.

• commit your DrawQt directory into svn.

Head toward the presentation of the application.

4.5.2 Step 2: reading the documentation (10 min)

During this initial step, paramount for the proper understanding of the overall workings of the application, we’ll crawl
thru some documentation.

1. first, build the documentation of DrawQt in the same fashion than for the previous sessions: using doxygen,

2. read the documentation in your browser,

3. look for the WFrame class. It will play a central role in this session. Navigate thru the classes connected to this
WFrame and try to grok the relationships between those.

4.5.3 Step 3: building the application (20 min)

In order to build the application, we need to properly configure CMT so the tool knows where to find the sources,
headers, etc...

Note: This configuration step wasn’t mandatory for the other sessions because our workarea was a directory cre-
ated by CMT itself hence autoconfigured. (and this configuration step wasn’t necessary either for the documentation
generation of step 2)

$> cmt config
$> source ./setup.sh

Then rebuild and run the application:

4.5. DrawQt 35

http://ens.lal.in2p3.fr/Presentations/DrawQt.html

LAL-Info Documentation, Release 1.14-npac

$> open ../app/DrawQt.app

This application is – for the moment – just a skeleton we’ll complete as we go along.

4.5.4 Step 4: reading an image (1h30)

Note: This step works you through the image reading implementation which has been written during the previous
session.

To ease the implementation task, speed up the process and help you start on sane foundations, you are provided with
a skeleton function. It is up to you to (correctly) complete it OR to re-use your own ReadFile code (copy paste it in
place of the skeleton).

1. The image reading functionality in DrawQt is named as in the image reading session: ReadFile(const
std::string&). Helped by the DrawQt documentation, look for the class hosting that method and which
method or function is calling that method. Then, compare its implementation with the one you wrote during the
image reading session (and complete/amend your skeleton if necessary.)

2. Test your application with the images stored under the Data directory. Some of the input files are purposedly
corrupted: you’ll need to amend the Image::ReadFile(const std::string&) method to correctly
handle (or print an error message) when dealing with such input data.

• test 1: bad keyword

• test 2: issue with the array filling (beware: program may crash!)

To display a message in a small dialog box, use the very well documented method QMessageBox.

3. once the tests are satisfactory, commit, remove all spurious printout messages and then commit again.

4.5.5 Step 5: support for an elliptical shape (1h30)

Note: The code you were provided with only handles rectangular shapes. In this exercize, a new Ellipse class will
be implemented to deal with a new type of shape. This class will inherit from the class Shape.

1. Create the files ellipse.h and ellipse.cpp. This class inherits from Shape so it also contains a data
member m_box of type BoundingBox. This variable is sufficient to encode the properties of an ellipsis. It is
therefore not needed to add any new data member to the class Ellipse.

2. Update the cmt/requirements file so it knows about the ellipse.cpp file.

3. Implement the methods of the class Shape which aren’t suitable for the class Ellipse. You can look at the
Rectangle class for some inspiration. The Qt method allowing to draw an ellipse is documented here.

4. Open the include/defs.h header file and modify it accordingly.

Note: enum SHAPE_TYPE is a type used for printing the name of a shape in a statistics box. There are
rules to follow if you want the name of your shape to be correctly displayed. These rules are described in lines
75-100 of the file wstatistics.ui. This file is a graphical interface file generated by QtDesigner, a tool
to create graphical user interfaces. Its format is XML. During the compilation, CMT takes this file as input and
produces a proper C++ file (ui_wstatistics.h) which is fed back to the compiler.

36 Chapter 4. CS hands-on at LAL

http://doc.qt.digia.com/4.2/qmessagebox.html
http://doc.qt.digia.com/4.2/qpainter.html#drawEllipse

LAL-Info Documentation, Release 1.14-npac

5. Implement the bool IsInside(int x, int y) method which will test if a given point falls inside the
ellipse or not.

Note: Some formulae about ellipses can be found here.

Note: The origin point (0,0) of the frame is the top-left corner. Positive x go to the right. Positive y go
down.

(0,0) +-----------+ (xmax, 0)
| |
| |
| |
| |
| |

(0, ymax) +-----------+ (xmax, ymax)

6. Implement the method SumValues(Image *pData) and the other methods which need special treatment
for an ellipse.

7. Complete the Selection::AllocateShape(SHAPE_TYPE type) method so it can correctly handle
the ellipse case.

8. Add a button for the ellipse in WFrame. You can look at the Rectangle class for inspiration. An icon exists
in the directory data/icons: Ellipse.bmp.

9. Update the statistics, on the right in DrawQt if not already done.

10. Do not forget to start with the correct ellipse formula and check the result...

4.5.6 Step 6: support for a square shape (1h)

Note: A square is a special case of a rectangle. The class Square will thus rather naturally inherit from the
Rectangle class. We’ll just amend the method to update the shape to force the rectangle to have a width and a
height of identical sizes.

1. Create the files square.h and square.cpp. This class won’t need any new data member.

2. Update the cmt/requirements file so it knows about square.cpp.

3. Implement the methods of the class Rectangle which aren’t suitable for Square.

4. Redefine ModifyEndShape(int lastMousePosition_x, int lastMousePosition_y) from
Shape in the class Square to force m_box to stay square. This method is called for each and every mouse
move during the painting of a shape. Look at the BoundingBox documentation, it could help you.

Note: You may want to use some mathematical functions in order to draw in all ways your square. max function is
defined in std template algorithm, the abs function is defined in math library.

1. Update the Selection::AllocateShape(SHAPE_TYPE type) method.

2. Add a button for the square in WFrame. An icon is available: Square.bmp

3. Update the statistics on the right in DrawQt if it hasn’t already been done.

4.5. DrawQt 37

http://en.wikipedia.org/wiki/Ellipse#Canonical_form
http://www.cplusplus.com/reference/algorithm/max/
http://www.cplusplus.com/reference/clibrary/cmath/abs/

LAL-Info Documentation, Release 1.14-npac

4.5.7 Step 7: support for a circular shape (1h)

Note: A circle is a special case of an ellipse. The class Circle will thus rather naturally inherit from the Ellipse
class. We’ll just amend the method to update the shape to force the ellipse to have a major and a minor axis of identical
lengths.

1. Create the files circle.cpp and circle.h. This class won’t need any new data member.

2. Update the cmt/requirements file so it knows about circle.cpp.

3. Implement the methods of the class Ellipse which aren’t suitable for Circle.

4. Redefine ModifyEndShape(int x, int y) from Shape in the class Circle to force m_box to stay
round. This method is called for each and every mouse move during the painting of a shape.

5. Update the Selection::AllocateShape(SHAPE_TYPE type) method.

6. Add a button for the square in WFrame. An icon is available: Circle.bmp

7. Update the statistics on the right in DrawQt if it hasn’t already been done.

4.5.8 Step 8: make a tag for your current work

Note: At this step, you should have a simple drawQt application that your will improve after. Let’s Make a tag with
this version. For more information about tag and branches, see the svn exercice

1. Go back into your Project/DrawQt folder

$> svn cp . https://svn.lal.in2p3.fr/projects/Etudiants/ens<n>/DrawQt/tag/<enter your tag name here> -m "First version of DrawQt"

4.6 Reading a file of shapes

4.6.1 Bootstrapping

Note: When a region of interest is identified in an image, one often needs to find it back later on.

In this session, we’ll implement a few I/O methods for the already existing shapes to be able to save and restore them.
We’ll of course build atop the code we already developed during the course of the previous sessions.

In order to easily read back a set of shapes, our strategy to load a shape from disk and its implementation will consist
of:

• a class Selection:

– holding a set of objects of type Shape (only one object for the time being)

– holding a method bool Selection::Read(std::ifstream& f) which will read the WHOLE
file of shapes.

• a class Shape:

– holding only one shape.

38 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

4.6.2 Step 1: adding the declaration of the new methods (45 min)

No data handling is asked for at this stage, it will be performed later on.

For the moment, we’ll only read a file holding just one shape. The grammar for the shape files is available and
documented on this page.

• Create a file shape.txt holding a square centered in (x=50, y=90) and of size 100. During the
“projects session(s)”, we’ll augment this file with a set of shapes.

• Commit this new file in svn under data directory of your DrawQt package:

$> cd data
$> svn add shape.txt
$> svn commit -m "adding my first shape file" shape.txt

• When clicking on the bottom-right read button of DrawQt, we wish to be able to read a file holding one
shape. The connection of this button to the void Visu2D::ReadSelection() method has already been
implemented for you, you can nevertheless have a look at how this has been performed in the WFrame class.

• Implement the void Visu2D::ReadSelection() method. It shall be able to:

1. open a file selector (look at bool WFrame::ReadImage() for inspiration)

Note: The return type of the QFileDialog will be a QString, but that the reading method of Selection is an
ifstream. Thereafter how to convert this QString into a ifstream:

// First, create an ifstream pointer
std::ifstream f;

// Then convert the QString into an std::string using QString::toStdString() method
std::string my_name = fname.toStdString();

// Open the file
f.open(my_name.c_str());

Now you could call the reading method of Selection

When a region of interest is identified in an image, one often needs to find it back later on.

1. call the reading method of Selection

2. print a message in the class Selection to check everything is correct

Warning: Take care when you call an object method, that the object has been created and initialized
before using it. Ex:

Selection my_selection = NULL;
....
my_selection->Read();

In this case my_selection is initialized to NULL. Using a method on a NULL pointer has disas-
trous effects on a program at runtime... You MUST protect your method calls by “if (my_selection)”
statement.

4.6. Reading a file of shapes 39

LAL-Info Documentation, Release 1.14-npac

4.6.3 Step 2: implementing the keywords reading method (45 min)

Note: Similar to the reading of Image files, we’ll implement a method to read back Shape files in this exercize as
described there.

The method to implement is given below. It can be used to cross-check with your implementation for the reading of
Image files.

/**
The grammar for a shape-file is the following:

shapes ::= shape | shape shapes | comment shapes

shape ::= ’SHAPE’ <number>
’TYPE’ type_name data
’SHAPE_END’

comment ::= ’COMMENT’ ... ’COMMENT_END’
type_name ::= ’SQUARE’ | ’RECTANGLE’ | ’CIRCLE’ | ’ELLIPSE’ | ’POLYGON’
data ::= envelope | list
envelope ::= ’ORIGIN’ <x> <y>

’WIDTH’ <width>
’HEIGHT’ <height>

list ::= ’NB_POINTS’ <number> points
points ::= point points | point
point ::= ’POINT’ <x> <y>

*/

bool Selection::Read(std::ifstream &f)
{

bool status = false;

if (!f.is_open()) {
std::cout << "Error. File ..." << std::endl;
return false;

}

std::string word = "";
std::string type = "";
std::string tmp = "";

unsigned int id_nbr = 0;
unsigned int origin_x = 0;
unsigned int origin_y = 0;
unsigned int height = 0;
unsigned int width = 0;
unsigned int nb_points = 0;
unsigned int pt_x = 0;
unsigned int pt_y = 0;

// define a state variable to identify words located inside the definition
// of a given Shape.
/**
* @brief Enum state

* Identifies the state of the analysis w.r.t the Shape

*/
enum {
void_state,
shape,

40 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

comment,
type_name,
data,
envelope,
list,
points

} state;

// state initialization
state = void_state;

while (!f.eof()) {

if (void_state == state) {
f >> word;

// grammar reminder:
// -----------------
// shapes ::= shape | shape shapes | comment shapes
// shape ::= ’SHAPE’ <number>
// ’TYPE’ type_name data
// ’SHAPE_END’
// comment ::= ’COMMENT’ ... ’COMMENT_END’
// in such a state, the allowed keywords are:
if ("COMMENT" == word) {

state = comment;
} else if ("SHAPE" == word) {

f >> id_nbr;
state = shape;

}

} else if (comment == state) {
// comment ::= ’COMMENT’ ... ’COMMENT_END’
f >> tmp;
if ("COMMENT_END" == tmp) {

// go to next state...
state = void_state;

}

} else if (shape == state) {
// shape ::= ’SHAPE’ <number>
// ’TYPE’ type_name data
// ’SHAPE_END’
// => need to read the tokens following the word ’SHAPE’: <number>
f >> word;
if ("TYPE" == word) {

state = type_name;
} else if ("SHAPE_END" == word) {

// end of shape OK.
status = true;
state = void_state;

} else {
QMessageBox msgBox;
msgBox.setText("Read shapes\n Error: invalid shape file");
msgBox.exec();

return false;
// error case(s) to be better handled...

4.6. Reading a file of shapes 41

LAL-Info Documentation, Release 1.14-npac

}

} else if (type_name == state) {
// type_name ::= ’SQUARE’ | ’RECTANGLE’ | ’CIRCLE’ | ’ELLIPSE’ | ’POLYGON’
f >> type;
if ("SQUARE" == type) {
} else if ("RECTANGLE" == type) {
} else if ("CIRCLE" == type) {
} else if ("ELLIPSE" == type) {
} else if ("POLYGON" == type) {
} else {
QMessageBox msgBox;
msgBox.setText("Read shapes\n Error: invalid shape file");
msgBox.exec();

return false;
// error case(s) to be better handled...

}
state = data;

} else if (data == state) {
// data ::= envelope | list
f >> word;
if ("ORIGIN" == word) {

state = envelope;

} else if ("NB_POINTS" == word) {
state = list;

} else {
QMessageBox msgBox;
msgBox.setText("Read shapes\n Error: invalid shape file");
msgBox.exec();

return false;
// error case(s) to be better handled...

}

} else if (envelope == state) {
// envelope ::= ’ORIGIN’ <x> <y>
// ’WIDTH’ <width>
// ’HEIGHT’ <height>
f >> origin_x;
f >> origin_y;
f >> word;
if ("WIDTH" != word) {

// handle error
}
f >> width;
f >> word;
if ("HEIGHT" != word) {

// handle error
}
f >> height;
state = shape;

} else if (list == state) {
// list ::= ’NB_POINTS’ <number> points

42 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

f >> nb_points;
state = points;

} else if (points == state) {
// points ::= point points | point
// point ::= ’POINT’ <x> <y>
for (unsigned int a = 1; a <= nb_points; ++a) {

f >> word;
if ("POINT" == word) {
f >> pt_x;
f >> pt_y;

} else {
// handle error

}
}
state = shape;

}
} //> while-loop

return status;
}

As we don’t handle (yet) the shapes parameters, nothing is visible because no shape is painted. The only means to
check everything is working properly is to print out messages (so we know the reading is performing well).

As usual, build, test and commit to svn:

$> cmt make
$> svn commit -m "implemented data file reading method with keywords"

4.6.4 Step 3: completing the reading method (1h30)

Note: The reading method being implemented, we’re still left with actually completing its skeleton (allocating shapes,
handling of errors, ...)

For each shape we read from disk, we need to actually create an instance of the according class. To this end, a method
Shape* AllocateShape(SHAPE_TYPE type) needs to be called with the correct type argument.

1. In the reading method, add a new variable SHAPE_TYPE type_id. Assign it the type the method has just
finished reading (see the header file defs.h)

2. Allocate a new object of type Shape using the method AllocateShape(...)

Warning: Do not forget to handle all the possible error cases (e.g. a non existing shape name).

Note: Do not bother (for the moment) with the type POLYGON which will be tackled during a dedicated project later
on.

Build, test and commit to svn:

$> cmt make
$> svn commit -m "type shape reading and shape allocation"

4.6. Reading a file of shapes 43

LAL-Info Documentation, Release 1.14-npac

4.6.5 Step 4: reading the content of a shape (25 min)

Note: Last step for the Shape class: we need to store the properties of each shape (WIDTH, HEIGHT, ...)

The class Shape owns an object of type BoundingBox. This is the object which will hold the properties of a shape.

1. Carefully inspect the documentation of the BoundingBox class.

2. In the class Selection, the parameters read from the file will need to be properly handed over to the new
Shape object (m_shape). Leverage the methods available in the Shape class to address this issue. If needed,
implement new helper methods within the Shape class.

Note: Do not bother (for the moment) with the type POLYGON which will be tackled during a dedicated project later
on.

Note: In order to draw the new shape read from the file, the method update() needs to be called at the end of the
reading (in the class Visu2D). This method will send the repaint signal, connected to the method paintEvent().

Rebuild, test and commit into svn:

$> cmt make
$> svn commit -m "reading of the shape parameters"

4.6.6 Step 5: error handling (2-3h)

1. Comments handling. It isn’t mandatory to store them but simply to be able to print them on screen when reading
a shape-file, by means of e.g. a QMessageBox.

Additional cross checks and errors handling can be implemented. The most usual types of errors are listed below:

• check the file is open and/or the stream is indeed valid,

• check no keyword is missing,

• check a circle has indeed identical height and width,

• check the dimensions aren’t negative

• ...

A file error-shapes is provided to test a few of these frequent errors.

4.6.7 Step 6: saving shapes (3-4h)

For this exercize, we’ll save objects in a file. We’ll strive to correctly format the output file so it closely matches the
original file format: ideally, the output file should be readable by another application using the Shape class (as we
did it for our application).

Therefore, we’ll implement a couple of new save methods which will deal with the details of the file formatting.

We wish to be able to save a file holding a shape when clicking on the button save at the bottom right
of the DrawQt window. In a similar fashion than for the reading, connect this button to the method void
Visu2D::SaveSelection()

This method will:

44 Chapter 4. CS hands-on at LAL

http://doc.qt.digia.com/4.2/qwidget.html#update
http://doc.qt.digia.com/4.2/qwidget.html#paintEvent

LAL-Info Documentation, Release 1.14-npac

• open a file selector,

• call the writing method of the Selection class: Selection::Save(std::ofstream&)

In the method Selection::Save(std::ofstream&):

1. Complete this method as we did for its reading counterpart. To this end, add a writing method in the Shape
class.

2. Check everything is working correctly by saving a file and reading it back.

Note: At this point, you are reading to start with the mini projects. But before that, please call us so we can check
everything is correct and compatible with the projects you’ll tackle.

4.7 Projects

4.7.1 Displaying the average intensity of a shape

The computation of the intensities’ integral in a shape is only sensible when the displayed image corresponds to an
event count (e.g. gamma rays detection in images from a POCI (Perioperative Compact Imager) gamma camera.) In
the case of the rat’s olfactory bulb, the image is computed from a movie (i.e. a serie of images) and the interesting
information is then the average of the intensities in a shape.

The main modifications will consist in:

• in the dialog box WStatistics, add a widget to display the intensities’ average. You should modify the
wstatistics.ui file (thru the Qt-designer) to do such a thing.

• accordingly amend the void WStatistics::UpdateStats(...) method to correctly update this item.

4.7.2 Reading/writing an image from/to a binary format

In order to ease the data access, the image.txt file provided at the beginning of the session and holding the images,
was an ASCII file. In practice, this kind of file format is very seldomly used because it isn’t very efficient, both in
terms of memory/disk space and in terms of access/reading speed. Instead, one usually resorts to binary format(s)
which consists in writing out data values byte by byte without any particular formatting.

Note: In their simplistic incarnations, binary formats aren’t portable, that is: e.g. you can not write a binary file on
a MacOS machine and expect to read it correctly on a PC machine. There are of course ways to write portable binary
formats.

For the file accesses, one will either use the STL iostream or the QFile class from Qt. More informations about
Qt can be found here.

We’ll save:

• m_nX as a short (2 bytes)

• m_nY as a short (2 bytes)

• the m_nX * m_nY values as int (4*m_nX*m_nY bytes)

• Writing. Add the item Save image (in WFrame::InitMenus()) in the File menu. Implement the
associated method Image::SaveImage(). The file extension shall be .bin. To handle the files’ extensions,
one could leverage the QFileInfo class and its suffix() method.

4.7. Projects 45

http://doc.qt.digia.com/4.2/classes.html

LAL-Info Documentation, Release 1.14-npac

One could either save the image value-by-value or percolate through the QVector class whose method
QVector::data() returns the address of the beginning of the vector and thus allows to save line-by-line (it
is more efficient because there are fewer seeks so fewer disk accesses.) The conversions std::vector <->
QVector can be done by means of QVector::toStdVector() and QVector::fromStdVector().

• Reading back. Modify the WFrame::ReadImage() so as to be able to seamlessly load images from ASCII
files (.dat) and binary image files (.bin). To achieve such a goal, one will have to pass as a third argument
to QFileDialog::getOpenFileName(...) the string "Images (*.dat *.bin)". The files’ ex-
tensions will be discovered thanks to the QFileInfo class and its QFileInfo::suffix() method. Im-
plement the corresponding Image::ReadBinaryFile().

• The program will be then tested with the bulbe-olfactif-hexana.bin and
bulbe-olfactif-pentylacetate.bin files which contain images from the rat’s olfactory bulb
acquired by intrinsic optical imaging while under olfactory stimulii.

4.7.3 Handling many shapes

Note: To begin with, the Selection class will need to be modified so each and every new Shape type will be
added to the already existing shapes on screen.

Then, an option allowing the user to choose between the Replace shape and Add shape modes shall be imple-
mented.

1. Modify the Selection class to handle an std::vector<Shape*> in lieu of a Shape*.

(a) in the method:

void Selection::HandleNewShape(Shape *s);

use std::vector::push_back(Shape *s) to add a new Shape.

(b) in the method:

void Selection::Draw(QPainter *);

write a loop to handle and represent all cached shapes.

(c) all the methods of the type GetWidth(), GetHeight(),... aren’t sensible. At this stage, one could
just have them return the values associated with the last shape having been drawn.

At this stage, it is possible to concurrently represent many different shapes on screen.

2. It is now time to add the option allowing the user to choose between the modes Replace shape and Add
shape.

(a) Create a button in WFrame to select the mode Add. An icon is available in the directory data/icons:
Add.bmp

(b) Add a boolean data member in Visu2D to know which mode is active. This variable needs to be updated
each time the user clicks on the ad hoc button in WFrame.

(c) Amend the method:

void Selection::HandleNewShape(Shape *s);

Add a boolean argument to know if the shape is added anew or is replacing the old one.

3. Finally, the user needs to be able to pick a shape among those already painted on screen and to display the
informations related to this shape. You should associate the mouse right click (Control-click) within a
shape to its selection.

46 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

(a) Implement a method to find and return the index of the shape which contains a given point (x,y):

/**
* @brief Return the index of the shape nearest to a given point (x,y)

* @param x: x coordinate.

* @param y: y coordinate.

*/
int GetNearestShape(int x, int y);

To achieve this, the method will loop over all the shapes stored in the std::vector and will ask the
method bool Shape::IsInside(int x, int y) if the point (x,y) falls inside the shape.

(b) In the method:

void Visu2D::HandleMouse(int type, QMouseEvent *e);

add for the right-click case the search for the nearest shape and the emission of an update signal:

emit(UpdateStats(m_selection, idx))

where idx is the index of the nearest shape. If the shapes’ translation has already been implemented, add
as a fourth argument to the method:

void Visu2D::MoveShape(int type, int x, int y);

the index of the shape to be moved around.

(c) Implement 2 methods, to – respectively – compute the total area of all currently displayed shapes and
compute the total number of counts.

(d) In the WFrame class, update the method:

void WFrame::UpdateStats(Selection *pSelection);

so it takes a second argument of type int to represent the index of the shape.

(e) Modify the connection accordingly, in the constructor of the class WFrame, i.e.: add an argument of type
int for the index of the shape:

connect(m_visu2d,
SIGNAL(UpdateStats(Selection*, int)),
SLOT(UpdateStats(Selection*, int)))

4. In the Selection class, update the read/write methods of several shapes. One can retrieve and reuse the code
of the previous sessions.

5. Check that everything is working correctly !

4.7.4 Internationalization

spot
In the context of international projects, it may be usefull to provide multiple versions of the same piece of software
but in various languages.

Qt offers the proper tools to easily tackle such a task.

4.7. Projects 47

http://doc.qt.digia.com/4.2/i18n.html

LAL-Info Documentation, Release 1.14-npac

4.7.5 Moving a shape

spot
The shape is moved if the left-button of the mouse is clicked (and held down) and if the button Move shape is
selected. The motion of the shape is identical of that of the mouse.

1. Implement the option allowing the user to select the mode Move shape by adding a button in WFrame. An
icon is available in the directory data/icons: Move.bmp

2. Add a boolean data member m_moveShapeMode to Visu2D to know if the current mode is Moving a
shape or not. This variable needs to be updated each time the user clicks on the corresponding button in
WFrame.

3. Complete the Shape class with the following virtual method:

/** @brief Test if the shape is still within the visualization window after

* a move. If it is, then move it.

* @param dx: displacement along x

* @param dy: displacement along y

* @param w: width of the window

* @param h: height of the window

*/
virtual bool TestAndMove(int dx, int dy, int w, int h);

w and h give the limits of the image in data coordinates to test the translation being asked for doesn’t move the
shape out of the visualization area (even just partially.) This method needs to be redefined for the polygon as
the translation isn’t restricted to just that of the BoundingBox.

4. In the Visu2D class, add a method similar to GenerateShape() and complete it:

void Visu2D::MoveShape(int type, int xData, int yData)
{
switch (type) {
case PRESS:

// handle it

case MOVE:
// handle it

case RELEASE:
// handle it

}
update();

}

The method Selection::GetShape() returns – for the moment – the one shape falling into the selection.
In the next project, it will return the current shape.

5. Modify the method:

void Visu2D::HandleMouse(int type, QMouseEvent *e);

to handle the mouse motion.

4.7.6 Operators overloading

spot

48 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

Reading/writing shapes via operator overloading. Heed towards the presentation about the operators overloading

Have a look at the include/boundingbox.h header file which holds the definition of the BoundingBox for
each shape, and in which a few operators have been already defined. Overload the << and >> operators in the Shape
and BoundingBox classes so they can be used to read/write shapes.

Note: You need to replace the methods Shape::Read(std::ifstream &f) and
Shape::Save(std::ofstream &f) using the corresponding overloaded operator. But the reading of
the SHAPE, TYPE (and perhaps SHAPE_END) keywords – which describe the structure of the file – will stay in
Selection::Read(std::ifstream &f).

The WIDTH, HEIGHT and ORIGIN keywords – which describe the data layout – will now be read in the
BoundingBox class. The Shape::Read(std::ifstream &f) method will thus contain only the bare mini-
mum (i.e. a few lines...)

The goal of this step is to delegate as best as possible the data handling to the class which manages those data – i.e.
BoundingBox.

You should add a method const std::string& BoundingBox::isValid() const to handle errors.
This method should return "" (an empty string) when everything is OK or your error message otherwise.

The prototypes of the methods to be overloaded are below:

/**
* @brief output operator overload (shapes output format)

* @param os : output fstream

* @param sh : shape to save

*/
friend std::ofstream& operator<<(std::ofstream& os, const Shape* sh);

/**
* @brief input operator overload (shapes input format)

* @param is : input fstream

* @param sh : shape to display

*/
friend std::ifstream& operator>> (std::ifstream& is, Shape* sh);

/**
* @brief output operator overload (boundingbox output format)

* @param os : output fstream

* @param bo : boundingBox to save

*/
friend std::ofstream& operator<<(std::ofstream& os, const BoundingBox& bo);

/**
* @brief input operator overload (boundingbox input format)

* @param is : input fstream

* @param bo : boundingBox to save

*/
friend std::ifstream& operator>> (std::ifstream& is, BoundingBox& bo);

Warning:
• notice the friend keyword. This keyword allows to grant wider access to parts of the internals of a class

to a function or to another class. In the .cpp source file, this keyword shouldn’t appear in the declaration
(nor in the definition) of the functions.

• notice how the Shape class is passed by-address and how the BoundingBox class is passed by-reference.

4.7. Projects 49

http://ens.lal.in2p3.fr/Presentations/c++-fct-op.html

LAL-Info Documentation, Release 1.14-npac

4.7.7 Implementing a new polygon shape

spot
A polygon is stored as a sequence of points and graphically displayed as a sequence of line segments connecting these
points.

The computation of a polygon’s area and of the number of counts which are enclosed within a polygon’s perimeter
need algorithms’ developments and will be tackled in a different project.

To simplify the code, the drawing of a polygon will be performed as long as the mouse’s button is pressed down. As
soon as it is released, the drawing will be considered as done. Don’t forget to only store the polygon’s points when the
current point is different from the previous one.

To better grasp the overall flow of events when a mouse event is triggered, here is the method call sequence:

• Visu2D::mouseMoveEvent(...), Visu2D::mouseReleaseEvent(...),
Visu2D::mousePressEvent(...) will call:

• Visue2D::HandleMouse(...) which itself will call:

• Visu2D::GenerateShape(...), in which you’ll find the various actions associated with the mouse and
the various methods of Selection being called.

You can browse the documentation of Visu2D to better grok this mechanism.

1. Create the files polygon.h and polygon.cpp. The list of points will be stored in a std::vector of
Point during the mouse’s movement.

2. Update the cmt/requirements file to know about the polygon.cpp file.

3. Overload the methods of the Shape class which aren’t suitable for the Polygon class. As for the
drawEllipse method used in a previous session, the method drawLine allowing to draw a line segment is
documented in Qt.

In the bool Polygon::ModifyEndShape() method, add the first corner of the polygon at the end of the
std::vector in order to have a closed polygon.

4. Complete the method Selection::AllocateShape(SHAPE_TYPE type)

5. Add a button in WFrame for the polygon. An icon is provided by Polygon.bmp

6. Update the statistics in DrawQt if it hasn’t been done already.

7. Update the read/write methods for the polygon.

Warning: For those who already tackled the ‘‘operator overloading‘‘ project
The Polygon holds parameters which are different than the other shapes. During the writing/reading of
this shape, it will be unavoidable to detect when you are dealing with such a special shape. To call a specific
method of Polygon with your Shape object, you will have to resort to cast this object into a Polygon:

Shape *s = ...;
Polygon *poly = static_cast<Polygon*>(s);

4.7.8 Estimating the mask of a polygon shape

spot
A mask is an image in which each pixel has for a value:

50 Chapter 4. CS hands-on at LAL

http://doc.qt.digia.com/4.2/classes.html

LAL-Info Documentation, Release 1.14-npac

• 1 if it is inside the polygon or exactly on its contour,

• 0 if it is outside the polygon

The proposed solution to tackle this exercize is to use a recursive method: a function (or method) which calls itself.
The main steps of such an algorithm are:

• mask initialization: the pixels corresponding to the corners of the polygon are set to 1, the others are set to 0,

• contour closure: discontinuities may stem from the fact that the corners aren’t necessarily close to each other,
which will be an issue at a later stage of the algorithm. This step is hence used to make the contour continuous.

• determination of a point within the contour (seed): simple algorithm for a polygon similar to a convex polygon
(but harder and harder for more complex polygons)

• filling the inner area of the contour: starting from the seed, call a function which recursively modify the value
of its 4 neighbours (changing it from 0 to 1.)

1. in the class Polygon, declare a data member m_mask of type Image. Add a method:

void Polygon::InitMask();

Instantiate the m_mask object with dimensions identical to the ones of the m_box BoundingBox (it isn’t
necessary for the mask to have the dimensions of the image.) Initialize all the pixels of the mask to 0, except
those stored in m_polygon which will be set to 1.

2. Closing the polygon. For each pair of consecutive corners:

• compute the slope of the segment joining them,

• for each point of this segment, set the pixel to 1 in m_mask.

Attention: if the slope is < 1 (in absolute value,) the loop must run over the x (blue case.) Otherwise, it
must run over the y (red case.)

At this stage, the contour should be completely closed.

3. Determination of a point within the polygon (seed). A simple algorithm consists in counting – starting from
a point not on the contour (i.e. the seed) – the number of points on an horizontal line passing by the seed
point, intersecting with the contour in an arbitrary chosen direction (left or right.) If the count is odd, the
point is inside the contour. Otherwise, it is outside.

4. Filling the contour. A recursive function is a function which calls itself. Beware to the boundary conditions
to prevent such a function to indefinitely call itself (hence using all the stack memory and then crashing your
program.)

Here, if a calling pixel (x,y) was set to 0, the method changes it to 1 and the method is then applied on each
of the 4 direct neighbours (right, left, up and down.) Such a process is stopped when the calling pixel is already
set to 1 (the contour is reached) or when the image border is reached (which shouldn’t happen if the contour
was correctly closed to start with and if the seed was correctly put inside the contour.)

void Polygon::Update4Neighbours(Image &mask, int x, int y)
{
if (x < 0 || x >= mask.GetNX() ||

4.7. Projects 51

LAL-Info Documentation, Release 1.14-npac

y < 0 || y >= mask.GetNY() ||
mask.GetData(x, y)) {

return;
}

mask.SetData(true, x, y);
Update4Neighbours(mask, x+1, y);
Update4Neighbours(mask, x-1, y);
Update4Neighbours(mask, x, y-1);
Update4Neighbours(mask, x, y+1);

}

5. One should display the mask to check it indeed contains ones inside the contour and zeroes around:

for (y = 0; y < m_mask.GetNY(); ++y) {
for (x = 0; x < m_mask.GetNX(); ++x) {
std::cout << m_mask.GetData(x,y);

}
std::cout << "\n";

}

6. This mask must now be used to decide if a given pixel falls within or outside a polygon, and thus compute the
area of the polygon (and compute the number of counts.)

The algorithm described above is rather limited (w.r.t the seed search) because it is rather difficult to be sure the point
is inside the polygon. One can write a more complex and sophisticated algorithm but one will (almost) always find
an edge case. That’s why we’ve actually chosen a different approach in the solution below. The principle of this
alternative consists in applying the recursive method on the points outside the contour (a 0 pixel at the image’s border
is bound to be outside the contour.) If one applies this method as long as there are 0 pixels on the image’s border,
then one gets a sort of negative of the mask, i.e. a mask whose pixels are 1 if they are outside the polygon (or on the
contour) and 0 otherwise. One then just has to invert the mask except for the pixels on the contour itself (which need
to stay set to 1.) The implementation of this method needs another local variable contour of type Image to store
the pixels on the contour. The code below replaces the steps 3 and 4:

// initialize the mask with the closed contour
for (y = 0; y < m_mask.GetNY(); ++y) {
for (x = 0; x < m_mask.GetNX(); ++x) {
m_mask.SetData(contour.GetData(x, y), x, y);

}
}

// call the recursive method for the left- and right-border pixels
for (y = 0; y < m_mask.GetNY(); ++y) {
if (!m_mask.GetData(0, y)) {
Update4Neighbours(m_mask, 0, y);

}

if (!m_mask.GetData(m_mask.GetNX()-1, y)) {
Update4Neighbours(m_mask, m_mask.GetNX()-1, y);

}
}

// call the recursive method for the up- and bottom-border pixels
for (x = 0; x < m_mask.GetNX(); ++x) {
if (!m_mask.GetData(x, 0)) {
Update4Neighbours(m_mask, x, 0);

}

52 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

if (!m_mask.GetData(x, m_mask.GetNY()-1)) {
Update4Neighbours(m_mask, x, m_mask.GetNY()-1);

}
}

// inverting the 0s and 1s, except for the contour
for (y = 0; y < m_mask.GetNY(); ++y) {
for (x = 0; x < m_mask.GetNX(); ++x) {
if (!contour.GetData(x, y)) {

m_mask.SetData(1-m_mask.GetData(x, y), x, y);
}

}
}

4.7.9 Estimating the mask of a polygon shape with Qt tools

spot
We wish to use the Qt classes to initialize the polygon shape mask. As for the corresponding algorithm development,
the mask should hold the value:

• 1 if a pixel is inside the polygon or on its contour,

• 0 otherwise.

FYI, the Qt class to use is QBitmap.

The main steps of this exercize are:

• to instantiate a QBitmap object,

• to associate it with a QPainter object so as to draw the contour along the same principle than the on-screen
display,

• fill the contour using a QBrush,

• initialize m_mask from the bitmap.

4.7.10 Editing the color of shapes

Very few instructions because very few things to actually do!

• As for when you added the ellipse, circle, ... buttons in the DrawQt interface, add a new button which will act
as a color selector. An icon is available in the directory data/icons: Colors.bmp

• Connect this button to the action:

void Visu2D::SelectColor();

which you’ll implement so as to display a color selector and retrieve the chosen value.

Note: To display a color selector, use the QColordialog class. If your SelectColor() is bigger than 3 lines
then you probably are heeding toward the wrong direction...

• Now, it’s up to you to make sure the shapes’ selection is painted with the right color.

4.7. Projects 53

http://doc.qt.digia.com/4.2/qcolordialog.html

LAL-Info Documentation, Release 1.14-npac

4.7.11 Deleting already displayed shapes

As for the previous project, very few instructions because not much to do!

• As for when you added the ellipse, circle, ... buttons in the DrawQt interface, add a new button which will act
as an eraser. An icon is available in the directory data/icons: Eraser.bmp

• Connect this button to the action:

void Visu2D::EraseShape();

which you’ll implement so as to erase all the displayed shapes. Don’t forget to call the method update() at
the end of your EraseShape() method (so the window can be refreshed.)

4.7.12 Shapes with different roles

To improve the signal over background ratio (SBR) of a given image, we estimate the average noise in an image region
containing a priori only background and we subtract it to the regions containing the signal.

In order to achieve such a laudable goal, we aim at being able to discriminate between 2 types of shapes: those con-
taining signal and those containing noise. The final information will be the intensity difference between the averaged
intensity in the signal shapes and in the noise shapes.

In practice, the user will have to choose a priori if the shape she is drawing corresponds to a signal shape or to a noise
one. A different color will be associated to each shape according to its type (or role.)

The main modifications will consist in:

• add a button in the tools bar to select the role of the shape to draw,

• modify the list of data members of the Selection class. You could, either:

– create a new data member m_noiseShapes of type std::vector<Shape*>, or

– modify the m_shapes variable into a 2d array (e.g.: index 0 to store the signal shapes and index 1
for the noise ones. For clarity’s sake, one should probably use an enum such as: enum SHAPE_ROLE
{SIGNAL=0, NOISE, NB_ROLES};)

std::vector< Shape* > m_shapes[NB_ROLES];

• modify the Selection class to take into account this new information. Most of the methods of this class must
be amended. For example:

Selection::AllocateShape(SHAPE_TYPE type);

should become:

Selection::AllocateShape(SHAPE_TYPE type, SHAPE_ROLE role);

• apply the necessary modifications to allow the displayed color of a shape to be dependant on its role.

• in the WStatistics dialog box, add a widget to display the difference of intensities between the average in-
tensity in the signal shapes and the average intensity for the noise shapes. Such a modification can be performed
on the wstatistics.ui file with Qt designer. Finally, apply the necessary modifications to update this
item.

4.7.13 Saving shapes in an XML file

spot

54 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

One wishes to save shapes in a somewhat more ‘standard’ file format in order to be able to share these files with other
applications. Therefore, we’ll use an XML file format. More informations on QtXML

Our file will have the following structure:

<!DOCTYPE Selection PUBLIC ’’ ’’>
<!--This file is created by DrawQt-->
<selection>
<shape number="1" >
<type>square</type>
<origin x="111" y="32" />
<dimension width="19" height="19" />

</shape>
<shape number="2" >
<type>rectangle</type>
<origin x="23" y="16" />
<dimension width="57" height="31" />

</shape>
<shape number="3" >
<type>ellipse</type>
<origin x="174" y="43" />
<dimension width="46" height="47" />

</shape>
<shape number="4" >
<type>circle</type>
<origin x="117" y="79" />
<dimension width="20" height="20" />

</shape>
<shape number="5" >
<type>polygon</type>
<nb_points value="5" />
<point x="103" y="106" />
<point x="86" y="108" />
<point x="71" y="118" />
<point x="67" y="133" />
<point x="118" y="115" />

</shape>
</selection>

The DOM model will be used to read/write our XML file. This means the XML file will be entirely loaded in memory as
a tree. One will have to iterate on the nodes of the tree and retrieve the interesting informations (and discard the other
ones.)

There is another model – called SAX – which we won’t use during this exercize (FYI, in that model, the file is read
piecewise on the fly and callbacks that you specify are called for each type of node.)

The first thing to mention is that Qt doesn’t verify (yet) if the XML file is valid (i.e. if the file has the expected XML
structure.) To address this issue, one can use external tools (and specify a DTD), but this isn’t required for this exercize.

We’ll hence assert the following hypothesis: the input file is well formed. It will thus be correctly read by Qt (e.g.
there won’t be any tag left open.) Moreover, the file will contain informations which are expected: we won’t bother
with error recovery.

A good online documentation on the Qt functions and XML can be found here.

A few words on the basics...

Take the file saving case:

4.7. Projects 55

http://en.wikipedia.org/wiki/XML
http://doc.qt.digia.com/4.2/qtxml.html
http://artis.imag.fr/~Xavier.Decoret/resources/qt/xml/#basics

LAL-Info Documentation, Release 1.14-npac

/* file structure we want to obtain:
<!DOCTYPE Selection PUBLIC ’’ ’’>
<!--This file is created by DrawQt-->
<selection>
<shape number="1" >

<type>square</type>
</shape>

</selection>

*/

// create an instance of our DOM implementation
QDomImplementation impl = QDomDocument().implementation();

// create the document name
// <!DOCTYPE Selection PUBLIC ’’ ’’>
QString name = "Selection";
QDomDocument doc(impl.createDocumentType(name, "", ""));

// add a comment
// <!--This file is created by DrawQt-->
doc.appendChild(doc.createComment("This file is created by DrawQt"));
doc.appendChild(doc.createTextNode("\n"));

// create the root node
// <selection>
QDomElement selectionNode = doc.createElement("selection");

// add this node to the document
doc.appendChild(selectionNode);

// create a shape-node and add an attribute
// <shape number="1" >
QDomeElement shapeNode = doc.createElement("shape");
shapeNode.setAttribute("number", idx+1);

// create a type-node and add an attribute
// <type>square</type>
QDomElement typeNode = doc.createElement("type");
typeNode.appendChild(doc.createTextNode(QString("square")));

// add this type-node to the shape-node
shapeNode.appendChild(typeNode);

// add this shape-node to the selection
selectionNode.appendChild(shapeNode);

// write the document into the file
outstream << doc.toString().toStdString();

Now, the reading part:

/* file structure after saving:
<!DOCTYPE Selection PUBLIC ’’ ’’>
<!--This file is created by DrawQt-->
<selection>
<shape number="1" >

<type>square</type>
</shape>

56 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

</selection>

*/

// create an instance of a DOM document
QDomDocument doc;

// read the tree via the file
QFile f(fileName.c_str());
if (!f.open(QIODevice::ReadOnly)) {

return false;
}

doc.setContent(&f);
f.close();

// now, all the elements of the file are loaded into the tree.
// we just have to iterate over those.

// retrieve the root element
QDomElement root = doc.documentElement();

// check the root is indeed the "selection" element
if (root.tagName() != QString("selection")) {

return false;
}

// fetch the first child of "selection"
QDomElement child = root.firstChild().toElement();

// iterate over all children
while (!child.isNull()) {

// child is a "shape"
if (child.tagName() == QString("shape")) {
// retrieve its attribute and display it
std::cout << "shape number ["

<< child.attribute("number","0").toInt()
<< "]" << std::endl;

// read the next element
QDomElement shapeNode = child.firstChild().toElement();

// iterate over all children
while (!shapeNode.isNull()) {

// child is a "type" node
if (shapeNode.tagName() == QString("type")) {

// retrieve its attribute and display it
std::cout << "type [" << shapeNode.text().toStdString() << "]"

<< std::endl;
}
// read next element
shapeNode = shapeNode.nextSibling().toElement();

}
}
// read next element
child = child.nextSibling().toElement();

}

So you’ll have to add the following methods to the Selection class:

4.7. Projects 57

LAL-Info Documentation, Release 1.14-npac

/**
* @brief Save the coordinates of the shapes into the file ‘fileName‘

* @param fileName: name of the output file

* @return true if everything’s OK.

*/
bool Selection::SaveXML(const std::string& fileName);

/**
* @brief Read the coordinates of the shapes saved into the file ‘fileName‘ and

* print them out

* @param fileName: name of the input file

* @return true if everything’s OK.

*/
bool Selection::LoadXML(const std::string& fileName);

You’ll also have to redefine the stream operators (<< and >>) of the Selection, BoundingBox and Polygon to
take into account the XML elements overloads.

e.g. for the BoundingBox:

QDomElement& operator<< (QDomElement &shapeNode, const BoundingBox &bb);

An XML input file is available here.

spot
At this stage, various independent but complementary developments are offered.

• on the graphical side:

– Moving a shape: ability to move an already existing shape. (**)

– Changing the color of already displayed shapes. (*)

– Creating a new Polygon shape. (*)

• graphics, on the side:

– Handling many shapes: ability to concurrently represent many shapes on the screen. (**)

– Deleting displayed shapes (*)

• a bit of algorithmics:

– Estimating the mask of a polygon shape: this mask is used to compute the area of a polygon and count the
number of events. The thorny issue in this development is the algorithmics development. (***)

• miscellaneous and optional:

– Displaying the average intensity in a shape (instead of a count ratio): involves the usage of
qt-designer. (**)

– Saving shapes in a XML format (***)

– Saving an image in a binary file and reading it back (**)

– Handling 2 types of shapes corresponding to either a signal region or a background region and subtracting
the average values. (***)

– Internationalization: using the tools provided by Qt to easily generate various versions of DrawQt in
different languages. (**)

– Operators overloading: Saving/loading shapes via operators overloading. (**)

58 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

– Estimating the mask of a polygon shape with Qt tools: it is advised to have already completed the algorith-
mics development before tackling this one. (**)

• (*): easy

• (**): average

• (***): more difficult

4.8 Appendix

4.8.1 Using the terminal under MacOS X

First steps

In the following, the prompt will be represented as $>. The prompt may differ from one account to the other (i.e. it
may be heavily customized by users or system administrators.)

• Logging in: your login name is ens-<n>where <n> runs from 31 to 50 depending from geographical location
in the lab room. Your password, for the first connection, is ens<AAAA> where <AAAA> is the current year.

Note: passwords are case sensitive.

• changing your password: the first thing to do, after the first connection, is to change your password in:

Apple Menu > System Preferences > Accounts

or, in french:

Menu Pomme > Preferences Systeme > Comptes

4.8. Appendix 59

LAL-Info Documentation, Release 1.14-npac

A good password should not be found in any dictionnary (neither french nor english nor ...), contains one or
more numbers and/or other non-alphanumeric characters. It must nonetheless be easy to remember (w/o being
ever written down.)

• launching the Terminal application:

In the Dock (the icons bar at the bottom of the screen,) click on the Terminal application icon:

• launching the Safari webbrowser:

Most of the documentation is hypertext documents which will be accessed with the Safariwebbrowser. Either
by issueing in your Terminal window:

$> open -a Safari

or by clicking on the Safari icon in the Dock:

• a few characters/key-combination associations:

60 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

character key combination
{ Atl-(
} Alt-)
[Alt-Shift-(
] Alt-Shift-)
~ Alt-n-space
| Alt-Shift-L
button 2 Control-click
button 3 Apple-click
\ Alt-Shift-/‘

A few unix commands from a terminal

• command syntax:

Generally speaking, a command issued in a terminal has the following syntax:

$> command_name parameter0 parameter1 ...

Some parameters may be interpreted as options which may modify the behaviour of the command. These
parameters-options are usually a single character prefixed with the - character. Other parameters may actually
be the input arguments to the command.

Examples:

– a command without any parameter:

$> ls
test.f metafile.ps mytest x.f

– a command with a parameter:

$> ls *.f
test.f x.f

– a command with an option:

$> ls -l
total 10
-rw-r--r-- 1 ens ENS 3 Jan 20 20:56 test.f
-rw-r--r-- 1 ens ENS 9 Jan 20 20:57 metafile.ps
-rwxr-xr-x 1 ens ENS 5 Jan 20 20:57 myest
-rw-r--r-- 1 ens ENS 2 Jan 20 20:57 x.f

– a command with an option and a parameter:

$> ls -l *.f
total 10
-rw-r--r-- 1 ens ENS 3 Jan 20 20:56 test.f
-rw-r--r-- 1 ens ENS 2 Jan 20 20:57 x.f

• inline help:

Under Unix, the inline help is called man (for manual.) Here is some online documentation about man on
MacOS. Here is the equivalent for Linux.

$> man command_I_wish_to_know_the_manual_of

If one doesn’t know the exact name of the command one wishes to be enlightened with, one can also run a
keyword-based query in the manual using the -k option, followed by a keyword:

4.8. Appendix 61

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/man.1.html
http://linux.die.net/man/1/man

LAL-Info Documentation, Release 1.14-npac

$> man -k compilation

This will provide you with the list of commands whose description line contains the word ‘compilation’.

To exit the man page, hit q or Control-C

If there is no man page for a command, one can usually try to reach the help page of that command by running
the command with -h, -H or -?.

For example, gs -h can be used to know about the possible options and parameters for the Ghostscript
tool (which interprets the postscript files on-screen.)

How to organize and handle files

• Files and directories

A file name can contain any printable character except a slash / nor a space. However, it is recommanded not
to use any character with special meaning for the shell, such as:

* ? < > | ; [] & () % # $ \

Some files have a name with a leading dot .. Especially in the login directories (i.e. your home directory,)
these files generally contain initialization parameters and configuration options. These files are granted special
treatment by the file handling commands (such as ls, rm, mv, cp...)

For example, the command:

$> ls *

won’t list these special files.

The files’ organization is hierarchical: each level in the hierarchy is called a directory. A directory is actually
a file which contains a list of files, among which one can find other directories, called subdirectories, among
which...

The whole set of files is mounted under a unique hierarchy whose the main root is called root and designated
by /. The following schema should clarify:

/
___....
| | | | | | |
bin dev etc lib Users Library Applications

|

| | |

ens0

| | |

temp work Projects
file1 test.f test_1

The complete name of a file is built by specifying the hierarchy of directories which holds it, separated by
slashes /.

– if the name starts by a /, it is an absolute path (i.e. a path starting from the root of the filesystem,)

– otherwise, it is a relative path, i.e. from the current directory. For each position in the hierarchy, there is a
current directory, also called work(ing) directory, which is considered by default if one does not explictly
qualify the access path.

Example:

62 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

if the current directory is /Users/ens0, to refer to the file file1 which is located under the subdirec-
tory temp, one can either access via:

/Users/ens0/temp/file1

or via:

temp/file1

– . and .. are – respectively – the current directory and the parent directory.

– ~ is the base directory of the current user (i.e. her home directory)

• a few useful commands to work with files and directories:

command name purpose
pwd print working directory
cd rep change to (sub)directory rep
mkdir rep make the (sub)directory rep
rmdir rep remove the (sub)directory rep
ls list the directory content
cp copy
mv move or rename
rm remove a file
more a simple pager (displays the content of a file page by page)

• find a file

It is possible to find and select a file from the metadata attached to it (name, date of last access, date of last
modification, size, ...) thanks to the find command. MacOS documentation can be found here. Linux
documentation can be found there.

This command walks thru the filesystem tree and executes an action for each and every file selected. e.g.: the
-print action will print the name of each selected file.

$> find root_directory [-criterions] [-actions]

Example:

$> find /Users/ens0 -name preferences -print

The command find starts from the /Users/ens0 directory, walks thru the whole sub-tree, looking for files
which have as a name preferences and then prints out the absolute path of each such file.

The following command will list all the files whose name starts with pref and are under your home directory:

$> find ~ -name "pref*" -print

• looking for a string in a file

The command grep prints all the lines containing a given expression (a string) in a file:

$> grep [options] expression [file...]

Example:

$> grep ’rectangle’ ~/Projects/DrawQt/src/*.cpp

This command will return the list of the lines in all the .cpp files (under ~/Projects/DrawQt/src)
which contain the string rectangle (but not Rectangle. If you want a case insensitive search, pass -i as
an option to grep.)

4.8. Appendix 63

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/find.1.html
http://linux.die.net/man/1/find

LAL-Info Documentation, Release 1.14-npac

The grep command allows to precisely describe the type of string being looked for and its relative position in
the lines being investigated.

MacOS documentation can be found here. Linux documentation can be found over there.

4.8.2 Compilation errors

Checking errors

If everything is ok, when you build your program, you should have something as the hereafter message with, at the
end, the sequence all ok:

$> cmt make
------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Darwin.make
CMTCONFIG=Darwin
...
...
...
all ok.

But sometimes a insidious bug unawares arises. In this case the build command won’t end with all ok but with
something as:

> ../src/hello.cpp: In function ’int main()’:
> ../src/hello.cpp:16: error: ’cout’ was not declared in this scope

So the first thing: check the messages sent by the build command!

An error is always reported with error. The compiler will also specify:

• in which file the error arises,

• at which line, and

• how it understand them.

Example:

src/hello.cpp:153:error: expected ‘}’ before ‘else’

Warning: Sometimes a first error will be followed by a lot of other errors..

For example if a brace is missing:

src/hello.cpp:153: error: expected ‘}’ before ’else’
src/hello.cpp:153: error: expected ‘}’ before ’else’
src/hello.cpp:156: error: break statement not within loop or switch
src/hello.cpp: At global scope:
src/hello.cpp:159: error: expected declaration before ’}’ token

The first error is followed by another one, so that the best thing to do is to correct the first one before go on with the
second one.

Correcting warnings

It is a good idea to correct the warning messages too. These arise as:

64 Chapter 4. CS hands-on at LAL

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/grep.1.html
http://linux.die.net/man/1/grep

LAL-Info Documentation, Release 1.14-npac

src/hello.cpp:92: warning: unused variable ’titi’

Some examples

• Include file missing :

> ../src/hello.cpp: In function ’int main()’:
> ../src/hello.cpp:16: error: ’cout’ was not declared in this scope

The incriminated line contents: std::cout << "Hello!" << std::endl;

The compiler doesn’t find cout(), this method being not declared. The include of the file iostream is
missing:

#include <iostream>

• ‘ambiguous overload’ :

> ../src/visu2d.cpp: In member function ’void Visu2D::SaveSelection()’:
> ../src/visu2d.cpp:201: error: ambiguous overload for ’operator==’ in ’fname == 0’
> ../src/visu2d.cpp:201: note: candidates are: operator==(const char*, const char*) <built-in>
> ../src/visu2d.cpp:201: note: operator==(QNoImplicitBoolCast, int) <built-in>
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:290: note: bool QString::operator==(const QString&) const
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:723: note: bool QString::operator==(const char*) const
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:340: note: bool QString::operator==(const QByteArray&) const
> /usr/local/qt/lib/QtCore.framework/Headers/qbytearray.h:427: note: bool operator==(const char*, const QByteArray&)
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:735: note: bool operator==(const char*, const QString&)
> ../src/visu2d.cpp: In member function ’bool Visu2D::ReadSelection()’:
> ../src/visu2d.cpp:214: error: ambiguous overload for ’operator==’ in ’fname == 0’
> ../src/visu2d.cpp:214: note: candidates are: operator==(const char*, const char*) <built-in>
> ../src/visu2d.cpp:214: note: operator==(QNoImplicitBoolCast, int) <built-in>
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:290: note: bool QString::operator==(const QString&) const
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:723: note: bool QString::operator==(const char*) const
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:340: note: bool QString::operator==(const QByteArray&) const
> /usr/local/qt/lib/QtCore.framework/Headers/qbytearray.h:427: note: bool operator==(const char*, const QByteArray&)
> /usr/local/qt/lib/QtCore.framework/Headers/qstring.h:735: note: bool operator==(const char*, const QString&)
> make[3]: *** [../Darwin/visu2d.o] error 1

This error, although more verbose, is simpler to resolve than it seems. Looking carefully, the first error is the
following:

> ../src/visu2d.cpp:201: error: ambiguous overload for ’operator==’ in ’fname == 0’

The corresponding line in the file is:

200 : QString fname = QFileDialog::getOpenFileName(this, "Choose a file", ".", "Images (*.sel)");
201 : if (fname == 0)

The variable fname has the QString type and the compiler can not apply the operator ==. It is proposing
several solutions:

>note: bool QString::operator==(const QString&) const
>note: bool QString::operator==(const char*) const
>note: bool QString::operator==(const QByteArray&) const
>note: bool operator==(const char*, const QByteArray&)
>note: bool operator==(const char*, const QString&)

4.8. Appendix 65

LAL-Info Documentation, Release 1.14-npac

Choose the right one ! In our case, the best solution is the following:

201 : if (fname == QString(""))

• ‘No such file’ :

> Headers -F/usr/local/qt/lib -DQT3_SUPPORT ../src/myWindow.cpp
> ../src/myWindow.cpp:15:20: error: wframe.h: No such file or directory

The compiler didn’t find the file wframe.h. There are several hints:

– the file doesn’t exist

– wrong spelling

– problem during including the file

#include <iostream>

Means that the file should be in the lookup directories scanned by the compiler by default such system libraries.
For example: iostream, fstream . . .

#include "wframe.h"

This file should be in one among the paths given to the compiler by the build command. There CMT is the
manager and the include paths are specified by CMT with the requirements file and the include_dirs
directive. By default the include directory is included.

• Example 4 :

> In file included from ../src/myWindow.cpp:12:
> ../src/myWindow.h:4:29: error: QtGui/QMainWindow: No such file or directory
> ../src/myWindow.h:5:29: error: QtGui/QPushButton: No such file or directory
> ../src/myWindow.cpp:13:17: error: QMenu: No such file or directory
> ../src/myWindow.cpp:14:20: error: QMenuBar: No such file or directory

4.8.3 CMT: a tool for the configuration management

Introduction

The software configuration (this is a rather crude definition) is the activity in charge of description and control of all
that constitutes a software project. This includes such various informations as:

• the name of the author of the software,

• project managers,

• the structural decomposition of the project in independent or correlated parts (“packages”)

• resources needed to build or use of the software,

• description of components (libraries, applications, etc. ...),

• actions to build the software (compilation, link editing, etc. ...).

66 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

For example, simply building an application, even simple, but made with some source modules, and using some
libraries (eg graphics) quickly becomes tedious if one only manually chain the commands for compiling and editing
links , especially memorizing options compilations that quickly become very complex.

The first tool available is the tool make. This tool can fully describe the components of an application in terms
of source files, libraries, compiled modules to be assembled, etc. It can detect among all possible actions for the
reconstruction of a software product, needed after partial modification of the source files.

However, the tool will become very complex to handle. Indeed, we must describe in a text file called traditionally
Makefile all rules of dependency between the modules, then all actions to be taken to make each item. Detailed
knowledge of all options to compile, link etc. .. is necessary, and make has no way to know the structure of the
development (where are the sources, the compilation, packages produced by other persons of the same project) or to
manage information specific to a given platform.

A number of tools (mostly commercial) exist in some environments to meet a little better on these issues. One can cite
MS Visual in Windows environments, and in the Unix world, many commercial products provide similar services.

We will consider a tool (not commercial) called CMT used in our physical environment, which automates the setup
process significantly. One can also read the complete documentation of this tool.

The CMT tool

Among the services provided by this tool, we will mainly consider here:

• steering CMT

• description of the source files of an application to automatically generate the necessary files needed by make .

• the ability to modify the compilation options or linking.

• the ability to build reusable libraries.

• the declaration of the use of external (external packages)

How to control CMT

Each work location (ie where we will produce an application for example) is called a package in CMT terminology.
Each package will be described by a text file named requirements installed in its directory cmt . CMT will find
in this file all informations needed to manage the configuration of the product. We will now describe some of this
information, those most often used.

When it was installed for the first time such a file requirements in a directory, thus defining a package, it is
necessary to configure the package with the command cmt config to run locally, and only once. This will produce a
universal Makefile (that means that remain unchanged regardless of changes in the package).

In the future use of the tool make the command make , CMT will be used transparently to automatically regenerate the
correct configuration settings of make.

Description of the source files for an application

If you want to build an application, we must give it a name (eg foo). The name is used among others things to name
the executable file (toto.exe).

application foo foo.cpp ../somewhere/a.cpp -s=../lib x.cpp y.cpp z.cpp

Then we need to specify all source files that will be compiled and then assembled to make the application. These
source files can be in the proper directory of the package (the current directory) or not. In the example shown here, we
have:

4.8. Appendix 67

http://www.cmtsite.net/CMTDoc.html

LAL-Info Documentation, Release 1.14-npac

• foo.cpp is a source file in the current directory

• a.cpp is a source file in the directory ../somewhere

• option -s=../lib indicates that the next source files will be searched in this directory (until the next option
-s=)

Changing compiler options or editing link

The configuration of the tool make is done through standardized macros, each one corresponding to a compiler or a
special tool. For C++ (as we are concerned primarily) we can consider the macro CPPFLAGS and cpplinkflags .

Generally, this will increase these macros, as they have already received a definition used by other packages or by CMT
itself. This is shown in the following example:

macro_append CPPFLAGS "-D__USE_STD_IOSTREAM"

Be careful to observe scrupulously the uppercase and lowercase letters, and many include a space character before
option added (so here before -D...).

Construction of libraries

A library can pre-compile and pre-assemble C++ modules so that multiple applications can use them without having
to rebuild them systematically.

We define a library with the following statement, put in the requirements, giving it a name and describing the
source files (as for applications):

library event a.cpp b.cpp c.cpp

Then, for an application (foo , for example) uses this library, it is sufficient to install a dedicated macro as follows:

macro foolinkopts "L-.-levent"

which means in this example that the application foo will be linked with the library named event and located in the
current directory (option -L.).

Statement by the use of external

Numerous external packages, usually providing specialized libraries can be registered to CMT and be referenced easily
through the following instructions:

use OPAC v3
use Ci v5r2

Each of these instructions gives automatic and transparent access to the libraries provided by these packages.

Using CMT

$> cd a_working_directory
$> cmt create MyPackage v1
$> cd MyPackage/cmt
$> vi ../src/...
$> vi requirements
$> source setup.sh
$> cmt make

68 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

For more information, visit the website CMT

4.8.4 Inputs/Outputs (I/O) in C++

Streams

The class std::ifstream implements input operations on file based streams.

• In order to use the class std::ifstream you need to include the file fstream with the directive :

#include <fstream>

• the constructor :

std::ifstream::ifstream(const char* name)

constructs the named file stream:

{
std::ifstream f ("figures.dat");

if (!f)
{

std::cerr << "Cannot open the file figures.dat" << std::endl;
return (1);

}
...

}

• the eof() method

bool std::ifstream::eof() const

returns true if the end of the given file stream has been reached.

{
std::ifstream f ("figures.dat");

while (!f.eof ())
{

... // Loop on file reading
}

f.close ();
...

}

• the close() method

void std::ifstream::close()

closes the file.

• the operator >> enables reading the next word.

{
std::ifstream f ("figures.dat");

// Reading word by word
while (!f.eof ())
{

4.8. Appendix 69

http://www.cmtsite.net/

LAL-Info Documentation, Release 1.14-npac

std::string word;

f >> word;
}

f.close ();
...

}

• the getline() method offers two versions:

1. std::istream& std::getline(char* str, int count)

reads characters from in input stream until delimiting character (end-of-line per default) is found and
saves them to the given string str. If delimiter is found, it is discarded.

{
std::ifstream f ("figures.dat");

// Line by line reading
while (!f.eof ())
{
char ligne[256];
std::string s;

f.getline (ligne, sizeof (ligne));
s = ligne;

}

f.close ();
...

}

2. std::istream& std::getline(std::istream& stream, std::string& line)

reads characters from in input stream until delimiting character (end-of-line per default) is found and
saves them to the given string str. If delimiter is found, it is discarded.

{
std::ifstream f ("figures.dat");

// Line by line reading
while (!f.eof ())
{
std::string s;

std::getline (f, s);
}

f.close ();
...

}

For more information, see : streams

70 Chapter 4. CS hands-on at LAL

http://www.cplusplus.com/reference/iostream/

LAL-Info Documentation, Release 1.14-npac

4.8.5 Structure and format of the image and shapes files

Structure of an Image file

Description

Image files are ASCII files holding the description of one image.

Syntax

For more informations about the grammar below, heed toward this wikipedia page

The complete syntax used in these text files can be described like so:

image ::= ‘IMAGE’ data ‘IMAGE_END’
data ::= ‘WIDTH’ <value>

‘HEIGHT’ <value>
‘PIXELS’ pixels

pixels ::= pixel pixels | pixel
pixel ::= <value>

Note: This type of grammar is a standard. For example, the first line means:

An ‘image’ is composed of the word IMAGE followed by ‘data’ and finally the token IMAGE_END.

To know what ‘data’ means, one just has to go to the next line.

Structure of a Shape file

Description

A shape file is a structured ASCII file holding the description of graphical shapes.

• each individual description of a shape is flanked by 2 keywords SHAPE and SHAPE_END.

• between these 2 keywords, the description of the shape itself is given by:

– its type (TYPE,)

– the geometrical data of the shape, dependent on the type of the shape.

Syntax

For more informations about the grammar below, heed toward this wikipedia page

The complete syntax used in these text files can be described like so:

4.8. Appendix 71

http://en.wikipedia.org/wiki/Backus-Naur_Form
http://en.wikipedia.org/wiki/Backus-Naur_Form

LAL-Info Documentation, Release 1.14-npac

shapes ::= shape | shape shapes | comment shapes
shape ::= ‘SHAPE’ <number> ‘TYPE’ type_name data ‘SHAPE_END’
comment ::= ‘COMMENT’ ... ‘COMMENT_END’
type_name ::= ‘SQUARE’ | ‘RECTANGLE’ | ‘CIRCLE’ | ‘ELLIPSE’ | ‘POLYGON’
data ::= envelope | list
envelope ::= ‘ORIGIN’ <x> <y> ‘WIDTH’ <width> ‘HEIGHT’ <height>
list ::= ‘NB_POINTS’ <number> points
points ::= point points | point
point ::= ‘POINT’ <x> <y>

4.8.6 STL: the (C++) standard template library

C++ itself has very few tools for managing sequences of characters, inputs/outputs and collections.

The STL library provides C++ with a standardized answer using the C++ proper mechanisms as:

• the object approach and capacity for abstraction with the operators

• use of templates

• operators overdefinition

The effective normalization of STL library make it a whole part of C++, and we will always use STL library for the
management of strings, IO and collections.

In particular, the overwhelming use of this library has proven its reliability and its level of optimization, both in the
use of memory or in performance.

Below we will describe only a few of services offered by STL.

Strings

The std::string class manages sequences of characters.

#include <string>

int main (int argc, char **argv)
{

std::string text = "abc defg";

std::string words[] = { "aaa", "bbb", "ccc", "ddd", "eee" };

text += words[0];

return (0);
}

Main operations with strings

• Assigning strings

std::string s = "abcd";
std::string t = s;

t += "abcd";

72 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

• String length

std::string s = "abcd";

int size = s.size ();

• Find content in string

std::string s = "abcd";

int pos = s.find ("bc");

• Getting C string equivalent for C functions

std::string s = "abcd";

if (!strcmp (s.c_str (), "abcd")) ...
...

• Use with std::getline() fonction

std::ifstream f;
std::string s;

std::getline (f, s);
...

Vectors

The std::vector class provides a linear sequence container for any type of object (which can be copied).

• base types:

#include <vector>

int main (int argc, char **argv)
{
std::vector<int> v;

for (int i = 0; i < 10; i++) {
v.push_back (i);

}
return (0);

}

• user objects:

#include <vector>

class A
{
public:
A (int value) : m_value(value) {}

private:
int m_value;

};

int main (int argc, char **argv)
{

4.8. Appendix 73

LAL-Info Documentation, Release 1.14-npac

std::vector<A> v;

for (int i = 0; i < 10; i++) {
v.push_back (A(i));

}
return (0);

}

• references or pointers to user objects:

#include <vector>

class A
{
public:
A (int value) : m_value(value) {}

private:
int m_value;

};

int main (int argc, char **argv)
{
std::vector<A*> v;

for (int i = 0; i < 10; i++) {
v.push_back (new A(i));

}
// somehow use v...

// clean-up: we need to call delete on each
// of the pointers, otherwise the memory will
// be leaked...
for (std::vector<A*>::iterator

itr = v.begin(),
iend= v.end();

itr != iend;
++itr) {

delete *itr;
// also put the pointer to NULL. useful for debugging
// and to prevent inadvertant double deletes...

*itr = 0;
}

return (0);
}

• vectors of vectors:

#include <vector>

int main (int argc, char **argv)
{
std::vector< std::vector< int > > v;

for (int x = 0; x < 10; x++) {

std::vector< int > column;
for (int y = 0; y < 10; y++) {

74 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

column.push_back (y*2);
}
v.push_back (column);

}
return (0);

Main operations acting on a vector

• Adding an element at the end of a vector

v.push_back (12);

• Removing the last element from a vector

v.pop_back ();

• Removing all elements from a vector

v.clear ();

• Getting the first et the last element from a vector

int first = v.front ();
int last = v.back ();

• Getting an element by its position

int i = v[2];

• Setting an element localized by its position

v.at(2) = 3;

Iterations in a vector

One can iterate through the elements of a vector using a category of iterator:

std::vector<T>::iterator

std::vector<T>::const_iterator

std::vector<T>::reverse_iterator

std::vector<T>::const_reverse_iterator

#include <iostream>

#include <vector>

typedef std::vector<int> int_vector;

int main (int argc, char **argv)
{

int_vector v;

for (int i = 0; i < 10; i++) {
v.push_back (i);

}

4.8. Appendix 75

LAL-Info Documentation, Release 1.14-npac

int_vector::iterator it;

for (it = v.begin (); it != v.end (); ++it) {

int i = *it;

std::cout << "i = " << i << std::endl;
}

return (0);
}

Some operations with iterators on vectors

• Removes an element from a vector

std::vector<int> v;
std::vector<int>::iterator it;

it = ...;

v.erase (it);

• Insert an element into a vector

std::vector<int> v;
std::vector<int>::iterator it;

it = v.begin ();

// Insert before the element pointed by it
v.insert (it, 24);

Lists

Lists given by list class almost act as vectors, but offer an implementation based on doubly-linked lists providing
efficient inserts and removes.

#include <list>
#include <iostream>

typedef std::list<int> int_list;

int main (int argc, char **argv)
{

int_list lst;

for (int i = 0; i < 10; i++) {

lst.push_front (i);
lst.push_back (i);

}

int_list::iterator it;

76 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

for (it = lst.begin (); it != lst.end (); ++it) {

int i = *it;

std::cout << "i = " << i << std::endl;
}

return 0;
}

Maps

The map class provides an indexed collection.

#include <iostream>

#include <map>
#include <string>

typedef std::map<int,std::string> dictionary;

int main (int argc, char **argv)
{

dictionary d;

std::string words[] = { "aaa", "bbb", "ccc", "ddd", "eee" };

for (int i = 0; i < sizeof (words) / sizeof (std::string); i++) {

d[i] = words[i];
}

dictionary::iterator it;

for (it = d.begin (); it != d.end (); ++it) {

int key = (*it).first;

std::string word = (*it).second;

std::cout << "word = " << word << std::endl;
}

return 0;
}

Some references

• SGI: Standard Template Library Programmer’s Guide

• Dinkumware

• STL Overview (from Rob Kremer - Calgary)

4.8. Appendix 77

http://www.sgi.com/tech/stl/
http://www.dinkumware.com/manuals/default.aspx#Standard%20C++%20Library
http://pages.cpsc.ucalgary.ca/~kremer/STL/monitor/index.html

LAL-Info Documentation, Release 1.14-npac

4.8.7 Introduction to make

spot
make can manage the:

• maintenance,

• update,

• regeneration and

• installation

of a set of interconnected files by testing their respective dates of last changes.

It is used in two steps:

1. a file usually named Makefile or makefile describes:

• the dependencies between different files;

• the production rules, or how to update, how to rebuild;

2. after any change in one source file, just type make;

Then make:

• examines the dependencies;

• finds files that are not up-to-date;

• executes the only necessary commands.

Structure of a Makefile:

A configuration file for make may contain essentially three types of lines:

• dependencies

• command lines

• macros

A dependency and the command lines associated is called a rule.

Caution: Do not consider a configuration file Makefile as a program. In particular, there is no “sequential
instructions” from beginning to end of the file.

The rules:

They are composed of:

• a rule with dependencies

this is expressed by a non-empty list of targets to be rebuilt, separated by a space

– followed by : or ::,

– followed by the possibly empty list dependencies;

78 Chapter 4. CS hands-on at LAL

LAL-Info Documentation, Release 1.14-npac

• a production rule

expressed by a TAB, followed by shell commands to be executed in order to update the target.

Example:

(The characters of a line following a # are ignored by make)

Prog.exe is generated from object files
prog.exe: prog.o test.o

cc -o prog.exe prog.o test.o
^^^ This should be a TAB
the previous line is an object files link instruction

In the above example, prog.exe is the target, and its last modification date is compared to those dependencies,
prog.o and test.o. The production rule, preceded by a TAB, is the link command cc -o prog.exe prog.o test.o.

It is possible to define rules without dependencies, as rules always executed; example:

To delete files no longer needed ...
clean::

rm -f *.o core *~

used the following way:

$> make clean

Macros:

• These are lines like: string1 = string2

• They can be defined anywhere in the Makefile

• Any occurrence of $(string1) will be replaced by string2

• The definition of a macro can refer to another macro

• Environment variables are used in the Makefile as macros

There are some predefined widely used macros; most important are:

• dependencies in the rule and production:

– $? : lists the names of dependent files newer than the target;

– $@ contains the name of dependent file without its suffix, if any;

• in the production rules only:

– $* : contains the name of the dependent file without its suffix, if any;

– $< : contains the filename of the dependency list in process (source file);

An example:

LPR = lpr -Ppegase
FILES = preface chap1 chap2 chap3 appendix
#
print : $(FILES)

$(LPR) $?
touch print

#

4.8. Appendix 79

LAL-Info Documentation, Release 1.14-npac

printall :
$(LPR) $(FILES)

Some tips:

• Do not forget the tab (note the confusion with a space) before each production rule. Think about it when you
get this message (usual) from make:

‘Make: Must be a separator on rules line #. Stop‘

• It should not be any space after the backslash continuation at the end of a line;

The following command:

$> cat -t -e Makefile

can display tabs and the end of each line in the configuration file Makefile (with ^I instead of tabs and a $
at the end of each line);

• In some systems, the last line of the makefile must contain a character “new line”;

• Each command line is executed in its own shell:

cd myTrash
rm *

is not the same as:

cd myTrash; \
rm *

equivalent to:

cd myTrash; rm *

Entry point make in the online manual.

4.8.8 FAQ

MacOS X how to

... Where is that damn character? (“{” or “~” or “]” etc.) Most common hidden characters:

character key combination
{ Atl-(
} Alt-)
[Alt-Shift-(
] Alt-Shift-)
~ Alt-n-space
| Alt-Shift-L
button 2 Control-click
button 3 Apple-click
\ Alt-Shift-/‘

One can also load the Visualiseur de clavier from the Saisie menu in the menu bar at the top right:

80 Chapter 4. CS hands-on at LAL

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/make.1.html

LAL-Info Documentation, Release 1.14-npac

Unix questions

... My executable is there, and yet I have the following error:

$> myExecutable.exe
zsh: command not found: myExecutable.exe

The simplest is to designate the executable by its relative path:

$> ./monExecutable.exe

where ”.” means the current directory.

C++/STL questions

... What is this story about std::? All the C++ standard library is defined in its own namespace, the namespace
std. Thus, we must always use the prefix std:: before all the elements that are drawn.

... How to convert a std::string into an integer? Using istringstream :

#include <sstream>

int main()
{
std::istringstream is("1");
int nombre;
is >> nombre;

return 0;
}

... And convert an integer to a std::string ? Using ostringstream :

#include <sstream>

int main()
{
std::ostringstream os;
os << 1;
std::string nbre_str = os.str();

4.8. Appendix 81

LAL-Info Documentation, Release 1.14-npac

return 0;
}

... And convert a std::string into a const char* ? By using the method c_str() . For example:

#include <string>

int main ()
{
std::string filename = "../data/formes.txt";
std::ifstream f
f.open(filename.c_str());
...
return 0;

}

... I have more unanswered questions! Some of the answers given above are taken from the FAQ C++ - Club
d’entraide des développeurs francophones (licensed under the GNU FDL)

The 4 basic commands for CMT

... cmt create <package> <version> creates and configures a new package

... cmt config creates setup and cleanup files

... cmt show uses shows all packages used by CMT

... source setup.sh/.csh in cmt directory updates the CMT environment variables

For more informations, see cmt help

The 5 basic commands for Subversion

... svn checkout URL[@REV] [PATH] / svn co URL[@REV] [PATH] recopies localy in the directory PATH a
repository located at URL.

... svn status / svn st compares the content of the current directory with regard to the repository and displays the
differences.

... svn update [PATH] / svn up [PATH] brings up the modifications from the repository PATH into the local direc-
tory.

Warning: Every single svn update must follow an svn status to check the state of our directory with regard
to the repository.

... svn add [PATH] adds the file(s) or directory PATH to the repository.

Warning: Every single svn add must follow an svn commit so the repository is up-to-date.

... svn commit [PATH] -m”[msg]” / svn ci [PATH] -m”[msg]” sends over to the repository all the local modifica-
tions applied to the directory (or file) PATH.

Warning: Every single svn commit must follow an svn status to check the state of our local copy with
regard to the repository.

For more informations, see svn help

82 Chapter 4. CS hands-on at LAL

http://cpp.developpez.com/faq/cpp/

LAL-Info Documentation, Release 1.14-npac

• Work in progress ...

• Slides

– Intro-en

4.8. Appendix 83

http://10.0.2.52:8888/avancementEtudiants.php

LAL-Info Documentation, Release 1.14-npac

84 Chapter 4. CS hands-on at LAL

INDEX

B
Backus-Naur, 70
branch

branches, svn, 14
create, svn, 19
merge, svn, 19
switch, svn, 19

branches
svn branch, 14

bug, 64

C
C++

lectures, 13
CMT, 66

error include_dirs, 64
requirements CMTPATH, 29
requirements Interfaces, 21, 28
setup.sh, 31

CMTPATH
CMT requirements, 29

configuration, 66
Console

output, 32
create

svn branch, 19

D
Doxyfile

Doxygen, 27
Doxygen

Doxyfile, 27
DrawQt, 34

E
error, 64

include_dirs, CMT, 64
export

svn, 21, 28, 34

G
grammar, 70

H
HEAD

svn, 18

I
ignore

svn, 22
Image, 70
image, 20
import

svn, 15
include_dirs

CMT error, 64
Interfaces

CMT requirements, 21, 28
io, 69
iterator, 72

L
lectures

C++, 13
list, 72

M
macro, 66
make, 66
Makefile, 66
map, 72
merge

svn branch, 19

O
output

Console, 32

Q
Qt, 27

signal slot, 32

R
ReadFile (C++ function), 26
requirements

85

LAL-Info Documentation, Release 1.14-npac

CMTPATH, CMT, 29
Interfaces, CMT, 21, 28

revert
svn, 18

S
setup.sh

CMT, 31
Shape

Shape reading, 38
Shape structure, 70

Shape reading
Shape, 38

Shape structure
Shape, 70

signal
slot, Qt, 32

slot
Qt signal, 32

std::getline (C++ function), 70
std::ifstream::close (C++ function), 69
std::ifstream::eof (C++ function), 69
std::ifstream::ifstream (C++ function), 69
STL, 72
stream, 69
string, 72
Subversion

SVN svn, 13
SVN

svn, Subversion, 13
svn

branch branches, 14
branch create, 19
branch merge, 19
branch switch, 19
export, 21, 28, 34
HEAD, 18
ignore, 22
import, 15
revert, 18
Subversion SVN, 13
tag, 20
tags, 14
trunk, 14

switch
svn branch, 19

T
tag

svn, 20
tags

svn, 14
trunk

svn, 14

V
vector, 72
verbose, 64

W
warning, 64

86 Index

	Agenda
	Bootstrapping
	Grading
	CS hands-on at LAL
	Introduction to C++
	First steps with subversion (svn)
	Reading an image from a file
	Managing a graphical interface with Qt
	DrawQt
	Reading a file of shapes
	Projects
	Appendix

	Index

